File size: 16,833 Bytes
af6d333
 
 
 
 
 
 
 
 
 
 
095d93c
 
d0c6696
 
 
af6d333
 
 
 
 
 
 
 
 
 
095d93c
 
af6d333
d0c6696
 
 
 
 
af6d333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c6696
af6d333
095d93c
af6d333
 
 
095d93c
af6d333
2af7694
af6d333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
095d93c
af6d333
 
 
 
095d93c
 
 
 
 
 
af6d333
6bfe27a
095d93c
af6d333
 
 
 
d0c6696
095d93c
d0c6696
 
af6d333
d0c6696
095d93c
af6d333
d0c6696
 
af6d333
 
d0c6696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af6d333
095d93c
af6d333
 
095d93c
af6d333
095d93c
af6d333
095d93c
af6d333
095d93c
af6d333
498af35
af6d333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
095d93c
 
 
af6d333
 
 
095d93c
af6d333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498af35
af6d333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dea15da
af6d333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb86f94
 
af6d333
 
 
 
 
 
 
 
eb86f94
 
af6d333
 
 
 
 
 
eb86f94
 
af6d333
 
 
 
 
 
 
eb86f94
 
af6d333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced0ae2
af6d333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import gradio as gr
import torch
import numpy as np
import tempfile
import os
import spaces
from diffusers import LTXLatentUpsamplePipeline
from pipeline_ltx_condition_control import LTXConditionPipeline
from diffusers.utils import export_to_video, load_video
from torchvision import transforms
import random
from controlnet_aux import CannyDetector
from image_gen_aux import DepthPreprocessor
import mediapipe as mp
from PIL import Image
import cv2

dtype = torch.bfloat16 
device = "cuda" if torch.cuda.is_available() else "cpu"

pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=dtype)
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipeline.vae, torch_dtype=dtype)
pipeline.to(device)
pipe_upsample.to(device)
pipeline.vae.enable_tiling()

canny_processor = CannyDetector()
depth_processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")

# Initialize MediaPipe pose estimation
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_pose = mp.solutions.pose

CONTROL_LORAS = {
    "canny": {
        "repo": "Lightricks/LTX-Video-ICLoRA-canny-13b-0.9.7",
        "weight_name": "ltxv-097-ic-lora-canny-control-diffusers.safetensors",
        "adapter_name": "canny_lora"
    },
    "depth": {
        "repo": "Lightricks/LTX-Video-ICLoRA-depth-13b-0.9.7", 
        "weight_name": "ltxv-097-ic-lora-depth-control-diffusers.safetensors",
        "adapter_name": "depth_lora"
    },
    "pose": {
        "repo": "Lightricks/LTX-Video-ICLoRA-pose-13b-0.9.7",
        "weight_name": "ltxv-097-ic-lora-pose-control-diffusers.safetensors", 
        "adapter_name": "pose_lora"
    }
}

@spaces.GPU()
def read_video(video) -> torch.Tensor:
    """
    Reads a video file and converts it into a torch.Tensor with the shape [F, C, H, W].
    """
    
    to_tensor_transform = transforms.ToTensor()
    video_tensor = torch.stack([to_tensor_transform(img) for img in video])
    return video_tensor

def round_to_nearest_resolution_acceptable_by_vae(height, width, vae_temporal_compression_ratio):
    height = height - (height % vae_temporal_compression_ratio)
    width = width - (width % vae_temporal_compression_ratio)
    return height, width

@spaces.GPU()
def load_control_lora(control_type, current_lora_state):
    """Load the specified control LoRA, unloading any previous one"""
    
    if control_type not in CONTROL_LORAS:
        raise ValueError(f"Unknown control type: {control_type}")
    
    # If same LoRA is already loaded, do nothing
    if current_lora_state == control_type:
        print(f"{control_type} LoRA already loaded")
        return current_lora_state
    
    # Unload current LoRA if any
    if current_lora_state is not None:
        try:
            pipeline.unload_lora_weights()
            print(f"Unloaded previous LoRA: {current_lora_state}")
        except Exception as e:
            print(f"Warning: Could not unload previous LoRA: {e}")
    
    # Load new LoRA
    lora_config = CONTROL_LORAS[control_type]
    try:
        pipeline.load_lora_weights(
            lora_config["repo"],
            weight_name=lora_config["weight_name"],
            adapter_name=lora_config["adapter_name"]
        )
        pipeline.set_adapters([lora_config["adapter_name"]], adapter_weights=[1.0])
        new_lora_state = control_type
        print(f"Loaded {control_type} LoRA successfully")
        return new_lora_state
    except Exception as e:
        print(f"Error loading {control_type} LoRA: {e}")
        raise

def process_video_for_canny(video):
    """
    Process video for canny control.
    """
    print("Processing video for canny control...")
    canny_video = []
    for frame in video: 
        # TODO: change resolution logic
        canny_video.append(canny_processor(frame, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024))
     
    return canny_video

@spaces.GPU()
def process_video_for_depth(video):
    """
    Process video for depth control.
    """
    print("Processing video for depth control...")
    depth_video = []
    for frame in video: 
        depth_video.append(depth_processor(frame)[0].convert("RGB"))
    return depth_video

@spaces.GPU()
def process_video_for_pose(video):
    """
    Process video for pose control using MediaPipe pose estimation.
    Returns video frames with pose landmarks drawn on black background.
    """
    print("Processing video for pose control...")
    pose_video = []
    
    with mp_pose.Pose(
        static_image_mode=True,
        model_complexity=1,
        enable_segmentation=False,
        min_detection_confidence=0.5,
        min_tracking_confidence=0.5
    ) as pose:
        
        for frame in video:
            # Convert PIL image to numpy array
            frame_np = np.array(frame)
            
            # Convert RGB to BGR for MediaPipe
            frame_bgr = cv2.cvtColor(frame_np, cv2.COLOR_RGB2BGR)
            
            # Process the frame
            results = pose.process(frame_bgr)
            
            # Create black background with same dimensions
            pose_frame = np.zeros_like(frame_np)
            
            # Draw pose landmarks if detected
            if results.pose_landmarks:
                mp_drawing.draw_landmarks(
                    pose_frame,
                    results.pose_landmarks,
                    mp_pose.POSE_CONNECTIONS,
                    landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style(),
                    connection_drawing_spec=mp_drawing_styles.get_default_pose_connections_style()
                )
            
            # Convert back to PIL Image
            pose_pil = Image.fromarray(pose_frame)
            pose_video.append(pose_pil)
    
    return pose_video

def process_video_for_control(video, control_type):
    """Process video based on the selected control type"""
    if control_type == "canny":
        return process_video_for_canny(video)
    elif control_type == "depth":
        return process_video_for_depth(video)
    elif control_type == "pose":
        return process_video_for_pose(video)
    else:
        return video
        
@spaces.GPU(duration=160)
def generate_video(
    reference_video,
    prompt,
    control_type,
    current_lora_state,
    duration=3.0,
    negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted",
    height=768,
    width=1152,
    num_inference_steps=30,
    guidance_scale=5.0,
    guidance_rescale=0.7,
    decode_timestep=0.05,
    decode_noise_scale=0.025,
    image_cond_noise_scale=0.0,
    seed=0,
    randomize_seed=False,
    progress=gr.Progress()
):
    try:
        # Initialize models if needed
        # Models are already loaded at startup
        
        if reference_video is None:
            return None, "Please upload a reference video."
        
        if not prompt.strip():
            return None, "Please enter a prompt."
        
        # Handle seed
        if randomize_seed:
            seed = random.randint(0, 2**32 - 1)
        
        progress(0.05, desc="Loading control LoRA...")
        
        # Load the appropriate control LoRA and update state
        updated_lora_state = load_control_lora(control_type, current_lora_state)
        
        # Loads video into a list of pil images 
        video = load_video(reference_video)
        progress(0.1, desc="Processing video for control...")
        
        # Process video based on control type
        processed_video = process_video_for_control(video, control_type)
        processed_video = read_video(processed_video) # turns to tensor
        
        progress(0.2, desc="Preparing generation parameters...")
        
        # Calculate number of frames from duration (24 fps)
        fps = 24
        num_frames = int(duration * fps) + 1  # +1 for proper frame count
        # Ensure num_frames is valid for the model (multiple of temporal compression + 1)
        temporal_compression = pipeline.vae_temporal_compression_ratio
        num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
        
        # Calculate downscaled dimensions
        downscale_factor = 2 / 3
        downscaled_height = int(height * downscale_factor)
        downscaled_width = int(width * downscale_factor)
        downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(
            downscaled_height, downscaled_width, pipeline.vae_temporal_compression_ratio
        )
        
        progress(0.3, desc="Generating video at lower resolution...")
        
        # 1. Generate video at smaller resolution
        latents = pipeline(
            reference_video=processed_video,  # Use processed video
            prompt=prompt,
            negative_prompt=negative_prompt,
            width=downscaled_width,
            height=downscaled_height,
            num_frames=num_frames,
            num_inference_steps=num_inference_steps,
            decode_timestep=decode_timestep,
            decode_noise_scale=decode_noise_scale,
            image_cond_noise_scale=image_cond_noise_scale,
            guidance_scale=guidance_scale,
            guidance_rescale=guidance_rescale,
            generator=torch.Generator().manual_seed(seed),
            output_type="latent",
        ).frames

        progress(0.6, desc="Upscaling video...")
        
        # 2. Upscale generated video
        upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
        upscaled_latents = pipe_upsample(
            latents=latents,
            output_type="latent"
        ).frames

        progress(0.8, desc="Final denoising and processing...")
        
        # 3. Denoise the upscaled video
        video_output = pipeline(
            prompt=prompt,
            negative_prompt=negative_prompt,
            width=upscaled_width,
            height=upscaled_height,
            num_frames=num_frames,
            denoise_strength=0.4,
            num_inference_steps=10,
            latents=upscaled_latents,
            decode_timestep=decode_timestep,
            decode_noise_scale=decode_noise_scale,
            image_cond_noise_scale=image_cond_noise_scale,
            guidance_scale=guidance_scale,
            guidance_rescale=guidance_rescale,
            generator=torch.Generator(device="cuda").manual_seed(seed),
            output_type="pil",
        ).frames[0]

        progress(0.9, desc="Finalizing output...")
        
        # 4. Downscale to expected resolution
        video_output = [frame.resize((width, height)) for frame in video_output]

        # Export to temporary file
        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
            output_path = tmp_file.name
            export_to_video(video_output, output_path, fps=fps)
        
        progress(1.0, desc="Complete!")
        
        return output_path, updated_lora_state
        
    except Exception as e:
        print(e)
        return None, current_lora_state

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown(
        """
        # LTX Video Control
        """
    )
    
    # State variable for tracking current LoRA
    current_lora_state = gr.State(value=None)
    
    with gr.Row():
        with gr.Column(scale=1):
    
            reference_video = gr.Video(
                label="Reference Video",
                height=300
            )
            
            prompt = gr.Textbox(
                label="Prompt",
                placeholder="Describe the video you want to generate...",
                lines=3,
                value="A graceful pink swan gliding smoothly across a serene lake, its elegant neck curved as it moves through the calm water. The swan's soft pink feathers shimmer in the gentle sunlight, creating ripples that spread outward in concentric circles. The lake is surrounded by lush green trees reflected in the still water. Shot from a side angle, the camera slowly follows the swan's peaceful movement across the frame. Cinematic lighting, 4K quality, smooth motion."
            )
            
            # Control Type Selection
            control_type = gr.Radio(
                label="Control Type",
                choices=["canny", "depth", "pose"],
                value="canny",
                info="Choose the type of control guidance for video generation"
            )
            
            duration = gr.Slider(
                label="Duration (seconds)",
                minimum=1.0,
                maximum=10.0,
                step=0.5,
                value=3.0
            )
            
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                placeholder="What you don't want in the video...",
                lines=2,
                value="worst quality, inconsistent motion, blurry, jittery, distorted"
            )
            
            # Advanced Settings
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=1024,
                        step=32,
                        value=768
                    )
                    width = gr.Slider(
                        label="Width", 
                        minimum=256,
                        maximum=1536,
                        step=32,
                        value=1152
                    )
                
                num_inference_steps = gr.Slider(
                    label="Inference Steps",
                    minimum=10,
                    maximum=50,
                    step=1,
                    value=30
                )
                
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=1.0,
                        maximum=15.0,
                        step=0.1,
                        value=5.0
                    )
                    guidance_rescale = gr.Slider(
                        label="Guidance Rescale",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.05,
                        value=0.7,
                        visible=False
                    )
                
                with gr.Row():
                    decode_timestep = gr.Slider(
                        label="Decode Timestep",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.01,
                        value=0.05,
                        visible=False
                    )
                    decode_noise_scale = gr.Slider(
                        label="Decode Noise Scale",
                        minimum=0.0,
                        maximum=0.1,
                        step=0.005,
                        value=0.025,
                        visible=False
                    )
                
                image_cond_noise_scale = gr.Slider(
                    label="Image Condition Noise Scale",
                    minimum=0.0,
                    maximum=0.5,
                    step=0.01,
                    value=0.0,
                    visible=False
                )
                
                with gr.Row():
                    randomize_seed = gr.Checkbox(
                        label="Randomize Seed",
                        value=False
                    )
                    seed = gr.Number(
                        label="Seed",
                        value=0,
                        precision=0
                    )
            
            generate_btn = gr.Button(
                "Generate",
            )
        
        with gr.Column(scale=1):          
            output_video = gr.Video(
                label="Generated Video",
                height=400
            )
        
            
    
    # Event handlers
    generate_btn.click(
        fn=generate_video,
        inputs=[
            reference_video,
            prompt,
            control_type,
            current_lora_state,
            duration,
            negative_prompt,
            height,
            width,
            num_inference_steps,
            guidance_scale,
            guidance_rescale,
            decode_timestep,
            decode_noise_scale,
            image_cond_noise_scale,
            seed,
            randomize_seed
        ],
        outputs=[output_video, current_lora_state],
        show_progress=True
    )

if __name__ == "__main__":
    demo.launch()