linoyts HF Staff commited on
Commit
af6d333
·
verified ·
1 Parent(s): 348560d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +431 -0
app.py ADDED
@@ -0,0 +1,431 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import numpy as np
4
+ import tempfile
5
+ import os
6
+ import spaces
7
+ from diffusers import LTXLatentUpsamplePipeline
8
+ from pipeline_ltx_condition_control import LTXConditionPipeline
9
+ from diffusers.utils import export_to_video, load_video
10
+ from torchvision import transforms
11
+ import random
12
+
13
+
14
+ dtype = torch.bfloat16
15
+ device = "cuda" if torch.cuda.is_available() else "cpu"
16
+
17
+ pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=dtype)
18
+ pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipeline.vae, torch_dtype=dtype)
19
+ pipeline.to(device)
20
+ pipe_upsample.to(device)
21
+ pipeline.vae.enable_tiling()
22
+
23
+
24
+ CONTROL_LORAS = {
25
+ "canny": {
26
+ "repo": "Lightricks/LTX-Video-ICLoRA-canny-13b-0.9.7",
27
+ "weight_name": "ltxv-097-ic-lora-canny-control-diffusers.safetensors",
28
+ "adapter_name": "canny_lora"
29
+ },
30
+ "depth": {
31
+ "repo": "Lightricks/LTX-Video-ICLoRA-depth-13b-0.9.7",
32
+ "weight_name": "ltxv-097-ic-lora-depth-control-diffusers.safetensors",
33
+ "adapter_name": "depth_lora"
34
+ },
35
+ "pose": {
36
+ "repo": "Lightricks/LTX-Video-ICLoRA-pose-13b-0.9.7",
37
+ "weight_name": "ltxv-097-ic-lora-pose-control-diffusers.safetensors",
38
+ "adapter_name": "pose_lora"
39
+ }
40
+ }
41
+ @spaces.GPU()
42
+ def read_video(video_path: str) -> torch.Tensor:
43
+ """
44
+ Reads a video file and converts it into a torch.Tensor with the shape [F, C, H, W].
45
+ """
46
+ pil_images = load_video(video_path)
47
+ to_tensor_transform = transforms.ToTensor()
48
+ video_tensor = torch.stack([to_tensor_transform(img) for img in pil_images])
49
+ return video_tensor
50
+
51
+ def round_to_nearest_resolution_acceptable_by_vae(height, width, vae_temporal_compression_ratio):
52
+ height = height - (height % vae_temporal_compression_ratio)
53
+ width = width - (width % vae_temporal_compression_ratio)
54
+ return height, width
55
+
56
+ @spaces.GPU()
57
+ def load_control_lora(control_type, current_lora_state):
58
+ """Load the specified control LoRA, unloading any previous one"""
59
+
60
+ if control_type not in CONTROL_LORAS:
61
+ raise ValueError(f"Unknown control type: {control_type}")
62
+
63
+ # If same LoRA is already loaded, do nothing
64
+ if current_lora_state == control_type:
65
+ print(f"{control_type} LoRA already loaded")
66
+ return current_lora_state
67
+
68
+ # Unload current LoRA if any
69
+ if current_lora_state is not None:
70
+ try:
71
+ pipeline.unload_lora_weights()
72
+ print(f"Unloaded previous LoRA: {current_lora_state}")
73
+ except Exception as e:
74
+ print(f"Warning: Could not unload previous LoRA: {e}")
75
+
76
+ # Load new LoRA
77
+ lora_config = CONTROL_LORAS[control_type]
78
+ try:
79
+ pipeline.load_lora_weights(
80
+ lora_config["repo"],
81
+ weight_name=lora_config["weight_name"],
82
+ adapter_name=lora_config["adapter_name"]
83
+ )
84
+ pipeline.set_adapters([lora_config["adapter_name"]], adapter_weights=[1.0])
85
+ new_lora_state = control_type
86
+ print(f"Loaded {control_type} LoRA successfully")
87
+ return new_lora_state
88
+ except Exception as e:
89
+ print(f"Error loading {control_type} LoRA: {e}")
90
+ raise
91
+
92
+ def process_video_for_canny(video_tensor):
93
+ """
94
+ Process video for canny control.
95
+ Placeholder function - will return video as-is for now.
96
+ TODO: Implement canny edge detection processing
97
+ """
98
+ print("Processing video for canny control...")
99
+
100
+ return video_tensor
101
+
102
+ def process_video_for_depth(video_tensor):
103
+ """
104
+ Process video for depth control.
105
+ Placeholder function - will return video as-is for now.
106
+ TODO: Implement depth estimation processing
107
+ """
108
+ print("Processing video for depth control...")
109
+
110
+ return video_tensor
111
+
112
+ def process_video_for_pose(video_tensor):
113
+ """
114
+ Process video for pose control.
115
+ Placeholder function - will return video as-is for now.
116
+ TODO: Implement pose estimation processing
117
+ """
118
+ print("Processing video for pose control...")
119
+
120
+ return video_tensor
121
+
122
+ def process_video_for_control(video_tensor, control_type):
123
+ """Process video based on the selected control type"""
124
+ if control_type == "canny":
125
+ return process_video_for_canny(video_tensor)
126
+ elif control_type == "depth":
127
+ return process_video_for_depth(video_tensor)
128
+ elif control_type == "pose":
129
+ return process_video_for_pose(video_tensor)
130
+ else:
131
+ return video_tensor
132
+
133
+ @spaces.GPU()
134
+ def generate_video(
135
+ reference_video,
136
+ prompt,
137
+ control_type,
138
+ current_lora_state,
139
+ duration=3.0,
140
+ negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted",
141
+ height=768,
142
+ width=1152,
143
+ num_inference_steps=30,
144
+ guidance_scale=5.0,
145
+ guidance_rescale=0.7,
146
+ decode_timestep=0.05,
147
+ decode_noise_scale=0.025,
148
+ image_cond_noise_scale=0.0,
149
+ seed=0,
150
+ randomize_seed=False,
151
+ progress=gr.Progress()
152
+ ):
153
+ try:
154
+ # Initialize models if needed
155
+ # Models are already loaded at startup
156
+
157
+ if reference_video is None:
158
+ return None, "Please upload a reference video."
159
+
160
+ if not prompt.strip():
161
+ return None, "Please enter a prompt."
162
+
163
+ # Handle seed
164
+ if randomize_seed:
165
+ seed = random.randint(0, 2**32 - 1)
166
+
167
+ progress(0.05, desc="Loading control LoRA...")
168
+
169
+ # Load the appropriate control LoRA and update state
170
+ updated_lora_state = load_control_lora(control_type, current_lora_state)
171
+
172
+ progress(0.1, desc="Loading reference video...")
173
+
174
+ # Read the reference video
175
+ video = read_video(reference_video)
176
+
177
+ progress(0.15, desc="Processing video for control...")
178
+
179
+ # Process video based on control type
180
+ processed_video = process_video_for_control(video, control_type)
181
+
182
+ progress(0.2, desc="Preparing generation parameters...")
183
+
184
+ # Calculate number of frames from duration (24 fps)
185
+ fps = 24
186
+ num_frames = int(duration * fps) + 1 # +1 for proper frame count
187
+ # Ensure num_frames is valid for the model (multiple of temporal compression + 1)
188
+ temporal_compression = pipeline.vae_temporal_compression_ratio
189
+ num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
190
+
191
+ # Calculate downscaled dimensions
192
+ downscale_factor = 2 / 3
193
+ downscaled_height = int(height * downscale_factor)
194
+ downscaled_width = int(width * downscale_factor)
195
+ downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(
196
+ downscaled_height, downscaled_width, pipeline.vae_temporal_compression_ratio
197
+ )
198
+
199
+ progress(0.3, desc="Generating video at lower resolution...")
200
+
201
+ # 1. Generate video at smaller resolution
202
+ latents = pipeline(
203
+ reference_video=processed_video, # Use processed video
204
+ prompt=prompt,
205
+ negative_prompt=negative_prompt,
206
+ width=downscaled_width,
207
+ height=downscaled_height,
208
+ num_frames=num_frames,
209
+ num_inference_steps=num_inference_steps,
210
+ decode_timestep=decode_timestep,
211
+ decode_noise_scale=decode_noise_scale,
212
+ image_cond_noise_scale=image_cond_noise_scale,
213
+ guidance_scale=guidance_scale,
214
+ guidance_rescale=guidance_rescale,
215
+ generator=torch.Generator().manual_seed(seed),
216
+ output_type="latent",
217
+ ).frames
218
+
219
+ progress(0.6, desc="Upscaling video...")
220
+
221
+ # 2. Upscale generated video
222
+ upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
223
+ upscaled_latents = pipe_upsample(
224
+ latents=latents,
225
+ output_type="latent"
226
+ ).frames
227
+
228
+ progress(0.8, desc="Final denoising and processing...")
229
+
230
+ # 3. Denoise the upscaled video
231
+ video_output = pipeline(
232
+ prompt=prompt,
233
+ negative_prompt=negative_prompt,
234
+ width=upscaled_width,
235
+ height=upscaled_height,
236
+ num_frames=num_frames,
237
+ denoise_strength=0.4,
238
+ num_inference_steps=10,
239
+ latents=upscaled_latents,
240
+ decode_timestep=decode_timestep,
241
+ decode_noise_scale=decode_noise_scale,
242
+ image_cond_noise_scale=image_cond_noise_scale,
243
+ guidance_scale=guidance_scale,
244
+ guidance_rescale=guidance_rescale,
245
+ generator=torch.Generator().manual_seed(seed),
246
+ output_type="pil",
247
+ ).frames[0]
248
+
249
+ progress(0.9, desc="Finalizing output...")
250
+
251
+ # 4. Downscale to expected resolution
252
+ video_output = [frame.resize((width, height)) for frame in video_output]
253
+
254
+ # Export to temporary file
255
+ with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
256
+ output_path = tmp_file.name
257
+ export_to_video(video_output, output_path, fps=fps)
258
+
259
+ progress(1.0, desc="Complete!")
260
+
261
+ return output_path, updated_lora_state
262
+
263
+ except Exception as e:
264
+ return None, current_lora_state
265
+
266
+ # Create Gradio interface
267
+ with gr.Blocks() as demo:
268
+ gr.Markdown(
269
+ """
270
+ # LTX Video Control
271
+ """
272
+ )
273
+
274
+ # State variable for tracking current LoRA
275
+ current_lora_state = gr.State(value=None)
276
+
277
+ with gr.Row():
278
+ with gr.Column(scale=1):
279
+
280
+ reference_video = gr.Video(
281
+ label="Reference Video",
282
+ height=300
283
+ )
284
+
285
+ prompt = gr.Textbox(
286
+ label="Prompt",
287
+ placeholder="Describe the video you want to generate...",
288
+ lines=3,
289
+ value="A graceful pink swan gliding smoothly across a serene lake, its elegant neck curved as it moves through the calm water. The swan's soft pink feathers shimmer in the gentle sunlight, creating ripples that spread outward in concentric circles. The lake is surrounded by lush green trees reflected in the still water. Shot from a side angle, the camera slowly follows the swan's peaceful movement across the frame. Cinematic lighting, 4K quality, smooth motion."
290
+ )
291
+
292
+ # Control Type Selection
293
+ control_type = gr.Radio(
294
+ label="Control Type",
295
+ choices=["canny", "depth", "pose"],
296
+ value="canny",
297
+ info="Choose the type of control guidance for video generation"
298
+ )
299
+
300
+ duration = gr.Slider(
301
+ label="Duration (seconds)",
302
+ minimum=1.0,
303
+ maximum=10.0,
304
+ step=0.5,
305
+ value=3.0
306
+ )
307
+
308
+ negative_prompt = gr.Textbox(
309
+ label="Negative Prompt",
310
+ placeholder="What you don't want in the video...",
311
+ lines=2,
312
+ value="worst quality, inconsistent motion, blurry, jittery, distorted"
313
+ )
314
+
315
+ # Advanced Settings
316
+ with gr.Accordion("Advanced Settings", open=False):
317
+ with gr.Row():
318
+ height = gr.Slider(
319
+ label="Height",
320
+ minimum=256,
321
+ maximum=1024,
322
+ step=32,
323
+ value=768
324
+ )
325
+ width = gr.Slider(
326
+ label="Width",
327
+ minimum=256,
328
+ maximum=1536,
329
+ step=32,
330
+ value=1152
331
+ )
332
+
333
+ num_inference_steps = gr.Slider(
334
+ label="Inference Steps",
335
+ minimum=10,
336
+ maximum=50,
337
+ step=1,
338
+ value=30
339
+ )
340
+
341
+ with gr.Row():
342
+ guidance_scale = gr.Slider(
343
+ label="Guidance Scale",
344
+ minimum=1.0,
345
+ maximum=15.0,
346
+ step=0.1,
347
+ value=5.0
348
+ )
349
+ guidance_rescale = gr.Slider(
350
+ label="Guidance Rescale",
351
+ minimum=0.0,
352
+ maximum=1.0,
353
+ step=0.05,
354
+ value=0.7
355
+ )
356
+
357
+ with gr.Row():
358
+ decode_timestep = gr.Slider(
359
+ label="Decode Timestep",
360
+ minimum=0.0,
361
+ maximum=1.0,
362
+ step=0.01,
363
+ value=0.05
364
+ )
365
+ decode_noise_scale = gr.Slider(
366
+ label="Decode Noise Scale",
367
+ minimum=0.0,
368
+ maximum=0.1,
369
+ step=0.005,
370
+ value=0.025
371
+ )
372
+
373
+ image_cond_noise_scale = gr.Slider(
374
+ label="Image Condition Noise Scale",
375
+ minimum=0.0,
376
+ maximum=0.5,
377
+ step=0.01,
378
+ value=0.0
379
+ )
380
+
381
+ with gr.Row():
382
+ randomize_seed = gr.Checkbox(
383
+ label="Randomize Seed",
384
+ value=False
385
+ )
386
+ seed = gr.Number(
387
+ label="Seed",
388
+ value=0,
389
+ precision=0
390
+ )
391
+
392
+ generate_btn = gr.Button(
393
+ "Generate",
394
+ )
395
+
396
+ with gr.Column(scale=1):
397
+
398
+ output_video = gr.Video(
399
+ label="Generated Video",
400
+ height=400
401
+ )
402
+
403
+
404
+
405
+ # Event handlers
406
+ generate_btn.click(
407
+ fn=generate_video,
408
+ inputs=[
409
+ reference_video,
410
+ prompt,
411
+ control_type,
412
+ current_lora_state,
413
+ duration,
414
+ negative_prompt,
415
+ height,
416
+ width,
417
+ num_inference_steps,
418
+ guidance_scale,
419
+ guidance_rescale,
420
+ decode_timestep,
421
+ decode_noise_scale,
422
+ image_cond_noise_scale,
423
+ seed,
424
+ randomize_seed
425
+ ],
426
+ outputs=[output_video, current_lora_state],
427
+ show_progress=True
428
+ )
429
+
430
+ if __name__ == "__main__":
431
+ demo.launch()