Spaces:
Runtime error
Runtime error
File size: 15,109 Bytes
af6d333 031aa77 4feab98 af6d333 031aa77 4feab98 af6d333 031aa77 af6d333 031aa77 af6d333 031aa77 af6d333 031aa77 4feab98 031aa77 af6d333 031aa77 af6d333 4feab98 af6d333 031aa77 af6d333 031aa77 af6d333 031aa77 af6d333 031aa77 af6d333 031aa77 af6d333 031aa77 af6d333 e2111cf af6d333 031aa77 af6d333 031aa77 af6d333 ced0ae2 af6d333 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import gradio as gr
import torch
import numpy as np
import tempfile
import os
import spaces
from diffusers import LTXLatentUpsamplePipeline
from pipeline_ltx_condition_control import LTXConditionPipeline
from diffusers.utils import export_to_video, load_video
from torchvision import transforms
import random
from controlnet_aux import CannyDetector
from image_gen_aux import DepthPreprocessor
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=dtype)
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipeline.vae, torch_dtype=dtype)
pipeline.to(device)
pipe_upsample.to(device)
pipeline.vae.enable_tiling()
canny_processor = CannyDetector()
depth_processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
CONTROL_LORAS = {
"canny": {
"repo": "Lightricks/LTX-Video-ICLoRA-canny-13b-0.9.7",
"weight_name": "ltxv-097-ic-lora-canny-control-diffusers.safetensors",
"adapter_name": "canny_lora"
},
"depth": {
"repo": "Lightricks/LTX-Video-ICLoRA-depth-13b-0.9.7",
"weight_name": "ltxv-097-ic-lora-depth-control-diffusers.safetensors",
"adapter_name": "depth_lora"
},
"pose": {
"repo": "Lightricks/LTX-Video-ICLoRA-pose-13b-0.9.7",
"weight_name": "ltxv-097-ic-lora-pose-control-diffusers.safetensors",
"adapter_name": "pose_lora"
}
}
@spaces.GPU()
def read_video(video) -> torch.Tensor:
"""
Reads a video file and converts it into a torch.Tensor with the shape [F, C, H, W].
"""
to_tensor_transform = transforms.ToTensor()
video_tensor = torch.stack([to_tensor_transform(img) for img in pil_images])
return video_tensor
def round_to_nearest_resolution_acceptable_by_vae(height, width, vae_temporal_compression_ratio):
height = height - (height % vae_temporal_compression_ratio)
width = width - (width % vae_temporal_compression_ratio)
return height, width
@spaces.GPU()
def load_control_lora(control_type, current_lora_state):
"""Load the specified control LoRA, unloading any previous one"""
if control_type not in CONTROL_LORAS:
raise ValueError(f"Unknown control type: {control_type}")
# If same LoRA is already loaded, do nothing
if current_lora_state == control_type:
print(f"{control_type} LoRA already loaded")
return current_lora_state
# Unload current LoRA if any
if current_lora_state is not None:
try:
pipeline.unload_lora_weights()
print(f"Unloaded previous LoRA: {current_lora_state}")
except Exception as e:
print(f"Warning: Could not unload previous LoRA: {e}")
# Load new LoRA
lora_config = CONTROL_LORAS[control_type]
try:
pipeline.load_lora_weights(
lora_config["repo"],
weight_name=lora_config["weight_name"],
adapter_name=lora_config["adapter_name"]
)
pipeline.set_adapters([lora_config["adapter_name"]], adapter_weights=[1.0])
new_lora_state = control_type
print(f"Loaded {control_type} LoRA successfully")
return new_lora_state
except Exception as e:
print(f"Error loading {control_type} LoRA: {e}")
raise
def process_video_for_canny(video):
"""
Process video for canny control.
"""
print("Processing video for canny control...")
canny_video = []
for frame in video:
# TODO: change resolution logic
canny_video.append(canny_processor(frame, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024))
return canny_video
def process_video_for_depth(video):
"""
Process video for depth control.
"""
print("Processing video for depth control...")
dapth_video = []
for frame in video:
dapth_video.append(depth_processor(frame)[0].convert("RGB"))
return dapth_video
def process_video_for_pose(video):
"""
Process video for pose control.
Placeholder function - will return video as-is for now.
TODO: Implement pose estimation processing
"""
print("Processing video for pose control...")
return video_tensor
def process_video_for_control(video, control_type):
"""Process video based on the selected control type"""
if control_type == "canny":
return process_video_for_canny(video)
elif control_type == "depth":
return process_video_for_depth(video)
elif control_type == "pose":
return process_video_for_pose(video)
else:
return video
@spaces.GPU(duration=120)
def generate_video(
reference_video,
prompt,
control_type,
current_lora_state,
duration=3.0,
negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted",
height=768,
width=1152,
num_inference_steps=30,
guidance_scale=5.0,
guidance_rescale=0.7,
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
seed=0,
randomize_seed=False,
progress=gr.Progress()
):
try:
# Initialize models if needed
# Models are already loaded at startup
if reference_video is None:
return None, "Please upload a reference video."
if not prompt.strip():
return None, "Please enter a prompt."
# Handle seed
if randomize_seed:
seed = random.randint(0, 2**32 - 1)
progress(0.05, desc="Loading control LoRA...")
# Load the appropriate control LoRA and update state
updated_lora_state = load_control_lora(control_type, current_lora_state)
# Loads video into a list of pil images
video = load_video(reference_video)
progress(0.1, desc="Processing video for control...")
# Process video based on control type
processed_video = process_video_for_control(video, control_type)
processed_video = read_video(processed_video) # turns to tensor
progress(0.2, desc="Preparing generation parameters...")
# Calculate number of frames from duration (24 fps)
fps = 24
num_frames = int(duration * fps) + 1 # +1 for proper frame count
# Ensure num_frames is valid for the model (multiple of temporal compression + 1)
temporal_compression = pipeline.vae_temporal_compression_ratio
num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
# Calculate downscaled dimensions
downscale_factor = 2 / 3
downscaled_height = int(height * downscale_factor)
downscaled_width = int(width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(
downscaled_height, downscaled_width, pipeline.vae_temporal_compression_ratio
)
progress(0.3, desc="Generating video at lower resolution...")
# 1. Generate video at smaller resolution
latents = pipeline(
reference_video=processed_video, # Use processed video
prompt=prompt,
negative_prompt=negative_prompt,
width=downscaled_width,
height=downscaled_height,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
decode_timestep=decode_timestep,
decode_noise_scale=decode_noise_scale,
image_cond_noise_scale=image_cond_noise_scale,
guidance_scale=guidance_scale,
guidance_rescale=guidance_rescale,
generator=torch.Generator().manual_seed(seed),
output_type="latent",
).frames
progress(0.6, desc="Upscaling video...")
# 2. Upscale generated video
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
upscaled_latents = pipe_upsample(
latents=latents,
output_type="latent"
).frames
progress(0.8, desc="Final denoising and processing...")
# 3. Denoise the upscaled video
video_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=upscaled_width,
height=upscaled_height,
num_frames=num_frames,
denoise_strength=0.4,
num_inference_steps=10,
latents=upscaled_latents,
decode_timestep=decode_timestep,
decode_noise_scale=decode_noise_scale,
image_cond_noise_scale=image_cond_noise_scale,
guidance_scale=guidance_scale,
guidance_rescale=guidance_rescale,
generator=torch.Generator().manual_seed(seed),
output_type="pil",
).frames[0]
progress(0.9, desc="Finalizing output...")
# 4. Downscale to expected resolution
video_output = [frame.resize((width, height)) for frame in video_output]
# Export to temporary file
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
output_path = tmp_file.name
export_to_video(video_output, output_path, fps=fps)
progress(1.0, desc="Complete!")
return output_path, updated_lora_state
except Exception as e:
return None, current_lora_state
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# LTX Video Control
"""
)
# State variable for tracking current LoRA
current_lora_state = gr.State(value=None)
with gr.Row():
with gr.Column(scale=1):
reference_video = gr.Video(
label="Reference Video",
height=300
)
prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the video you want to generate...",
lines=3,
value="A graceful pink swan gliding smoothly across a serene lake, its elegant neck curved as it moves through the calm water. The swan's soft pink feathers shimmer in the gentle sunlight, creating ripples that spread outward in concentric circles. The lake is surrounded by lush green trees reflected in the still water. Shot from a side angle, the camera slowly follows the swan's peaceful movement across the frame. Cinematic lighting, 4K quality, smooth motion."
)
# Control Type Selection
control_type = gr.Radio(
label="Control Type",
choices=["canny", "depth", "pose"],
value="canny",
info="Choose the type of control guidance for video generation"
)
duration = gr.Slider(
label="Duration (seconds)",
minimum=1.0,
maximum=10.0,
step=0.5,
value=3.0
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="What you don't want in the video...",
lines=2,
value="worst quality, inconsistent motion, blurry, jittery, distorted"
)
# Advanced Settings
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1024,
step=32,
value=768
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1536,
step=32,
value=1152
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=10,
maximum=50,
step=1,
value=30
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=15.0,
step=0.1,
value=5.0
)
guidance_rescale = gr.Slider(
label="Guidance Rescale",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.7
)
with gr.Row():
decode_timestep = gr.Slider(
label="Decode Timestep",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.05
)
decode_noise_scale = gr.Slider(
label="Decode Noise Scale",
minimum=0.0,
maximum=0.1,
step=0.005,
value=0.025
)
image_cond_noise_scale = gr.Slider(
label="Image Condition Noise Scale",
minimum=0.0,
maximum=0.5,
step=0.01,
value=0.0
)
with gr.Row():
randomize_seed = gr.Checkbox(
label="Randomize Seed",
value=False
)
seed = gr.Number(
label="Seed",
value=0,
precision=0
)
generate_btn = gr.Button(
"Generate",
)
with gr.Column(scale=1):
output_video = gr.Video(
label="Generated Video",
height=400
)
# Event handlers
generate_btn.click(
fn=generate_video,
inputs=[
reference_video,
prompt,
control_type,
current_lora_state,
duration,
negative_prompt,
height,
width,
num_inference_steps,
guidance_scale,
guidance_rescale,
decode_timestep,
decode_noise_scale,
image_cond_noise_scale,
seed,
randomize_seed
],
outputs=[output_video, current_lora_state],
show_progress=True
)
if __name__ == "__main__":
demo.launch() |