File size: 3,666 Bytes
0228682 735a2fd df941ba eeeb3ea df941ba eeeb3ea df941ba eeeb3ea df941ba eeeb3ea df941ba eeeb3ea df941ba eeeb3ea df941ba eeeb3ea df941ba eeeb3ea 0bd503e eeeb3ea 0bd503e eeeb3ea 0bd503e eeeb3ea 0bd503e eeeb3ea df941ba 0bd503e 735a2fd eeeb3ea df941ba 735a2fd 0228682 df941ba 0228682 735a2fd 0228682 eeeb3ea 0228682 735a2fd 0228682 ade49f8 0228682 eeeb3ea df941ba 0228682 df941ba 0228682 df941ba 0228682 df941ba 0228682 eeeb3ea df941ba eeeb3ea df941ba 0228682 df941ba 0228682 df941ba 0228682 df941ba 0228682 df941ba 0228682 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import streamlit as st
from func import (
get_sentiment_pipeline,
get_ner_pipeline,
fetch_news,
analyze_sentiment,
extract_org_entities,
)
import time
# ----------- Page Config -----------
st.set_page_config(
page_title="EquiPulse: Real-Time Stock News Sentiment",
layout="centered",
initial_sidebar_state="collapsed"
)
# ----------- Custom Styling -----------
st.markdown("""
<style>
body {
background-color: #ffffff;
}
h1 {
color: #002b45;
font-family: 'Segoe UI', sans-serif;
font-size: 32px;
}
.stTextInput > div > div > input,
.stTextArea textarea {
font-size: 16px;
}
.stButton>button {
background-color: #002b45;
color: white;
font-size: 16px;
padding: 0.4rem 1rem;
border-radius: 6px;
}
.stButton>button:hover {
background-color: #004b78;
}
.stMarkdown {
font-size: 16px;
}
</style>
""", unsafe_allow_html=True)
# ----------- Header Section -----------
col1, col2 = st.columns([1, 9])
with col1:
st.image("https://cdn-icons-png.flaticon.com/512/2721/2721203.png", width=48)
with col2:
st.markdown("<h1 style='margin-bottom: 0.2rem;'>EquiPulse: Real-Time Stock News Sentiment</h1>", unsafe_allow_html=True)
# ----------- Description -----------
st.markdown("""
<div style='font-size:16px; line-height:1.6;'>
Uncover real-time sentiment from financial headlines mentioning your target companies.<br>
<b>💬 Try:</b> <i>Apple, Tesla, and Microsoft</i>
</div>
""", unsafe_allow_html=True)
# ----------- Input Area -----------
st.markdown("#### 🎯 Enter Your Target Company Tickers")
free_text = st.text_area("Example: Apple, Nvidia, Google", height=90)
ner_pipeline = get_ner_pipeline()
tickers = extract_org_entities(free_text, ner_pipeline)
if tickers:
st.markdown(f"✅ **Identified Tickers:** `{', '.join(tickers)}`")
else:
tickers = []
# ----------- Action Button -----------
if st.button("Get News and Sentiment"):
if not tickers:
st.warning("⚠️ Please enter at least one recognizable company name.")
else:
sentiment_pipeline = get_sentiment_pipeline()
progress_bar = st.progress(0)
total_stocks = len(tickers)
for idx, ticker in enumerate(tickers):
st.markdown(f"---\n#### 🔍 Analyzing: `{ticker}`")
news_list = fetch_news(ticker)
if news_list:
sentiments = [analyze_sentiment(news['title'], sentiment_pipeline) for news in news_list]
pos_count = sentiments.count("Positive")
neg_count = sentiments.count("Negative")
total = len(sentiments)
pos_ratio = pos_count / total if total else 0
neg_ratio = neg_count / total if total else 0
if pos_ratio >= 0.25:
overall = "Positive"
elif neg_ratio >= 0.75:
overall = "Negative"
else:
overall = "Neutral"
st.markdown(f"**📰 Top News for `{ticker}`:**")
for i, news in enumerate(news_list[:3]):
st.markdown(f"{i+1}. [{news['title']}]({news['link']}) — **{sentiments[i]}**")
st.success(f"📈 **Overall Sentiment for `{ticker}`: {overall}**")
else:
st.info(f"No recent news available for `{ticker}`.")
progress_bar.progress((idx + 1) / total_stocks)
time.sleep(0.1)
|