File size: 4,083 Bytes
0228682
735a2fd
 
 
 
 
 
 
 
 
df941ba
 
eeeb3ea
df941ba
 
 
 
eeeb3ea
df941ba
 
 
eeeb3ea
df941ba
9966141
 
 
 
 
 
 
 
 
 
 
 
 
 
eeeb3ea
df941ba
9966141
 
 
df941ba
 
 
 
 
 
eeeb3ea
df941ba
 
 
 
 
 
eeeb3ea
 
 
 
df941ba
 
 
 
9966141
dd11797
9966141
 
dd11797
 
0bd503e
9966141
0bd503e
9966141
 
df941ba
0bd503e
 
735a2fd
9966141
 
df941ba
9966141
735a2fd
 
0228682
 
9966141
0228682
 
 
735a2fd
9966141
0228682
9966141
0228682
735a2fd
0228682
 
ade49f8
0228682
9966141
df941ba
0228682
 
 
df941ba
 
 
0228682
df941ba
 
0228682
eeeb3ea
df941ba
eeeb3ea
df941ba
0228682
df941ba
0228682
df941ba
 
 
0228682
df941ba
0228682
9966141
0228682
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import streamlit as st
from func import (
    get_sentiment_pipeline,
    get_ner_pipeline,
    fetch_news,
    analyze_sentiment,
    extract_org_entities,
)
import time

# ----------- Page Config -----------
st.set_page_config(
    page_title="EquiPulse: Real-Time Stock News Sentiment",
    layout="centered",
    initial_sidebar_state="collapsed"
)

# ----------- Custom Styling -----------
st.markdown("""
    <style>
        body {
            background-color: #ffffff;
        }
        .title-wrapper {
            display: inline-block;
            white-space: nowrap;
            overflow-x: auto;
            max-width: 100%;
        }
        .title-wrapper::-webkit-scrollbar {
            height: 4px;
        }
        .title-wrapper::-webkit-scrollbar-thumb {
            background-color: #ccc;
            border-radius: 2px;
        }
        .main-title {
            color: #002b45;
            font-family: 'Segoe UI', sans-serif;
            font-size: 26px;
            font-weight: 600;
            margin: 0;
        }
        .stTextInput > div > div > input,
        .stTextArea textarea {
            font-size: 16px;
        }
        .stButton>button {
            background-color: #002b45;
            color: white;
            font-size: 16px;
            padding: 0.4rem 1rem;
            border-radius: 6px;
        }
        .stButton>button:hover {
            background-color: #004b78;
        }
        .stMarkdown {
            font-size: 16px;
        }
    </style>
""", unsafe_allow_html=True)

# ----------- Header Title (One-line, Scrollable if Long) -----------
st.markdown("""
    <div class="title-wrapper">
        <h1 class="main-title">πŸ“Š EquiPulse: Real-Time Stock News Sentiment</h1>
    </div>
""", unsafe_allow_html=True)

# ----------- Description Section -----------
st.markdown("""
<div style='font-size:16px; line-height:1.6; color: #333333; margin-bottom: 1rem;'>
    Analyze real-time financial sentiment from news headlines related to companies you're interested in.
</div>
""", unsafe_allow_html=True)

# ----------- Input Area -----------
st.markdown("#### 🎯 Enter Company Tickers or Names")
free_text = st.text_area("Example: AAPL, NVIDIA, Tesla", height=90)

# ----------- Ticker Extraction -----------
ner_pipeline = get_ner_pipeline()
tickers = extract_org_entities(free_text, ner_pipeline)

if tickers:
    st.markdown(f"βœ… **Recognized Tickers:** `{', '.join(tickers)}`")
else:
    tickers = []

# ----------- Action Button -----------
if st.button("πŸ” Get News and Sentiment"):
    if not tickers:
        st.warning("⚠️ Please enter at least one recognizable company name or ticker.")
    else:
        sentiment_pipeline = get_sentiment_pipeline()
        progress_bar = st.progress(0)
        total_stocks = len(tickers)

        for idx, ticker in enumerate(tickers):
            st.markdown(f"---\n#### πŸ” Analyzing `{ticker}`")

            news_list = fetch_news(ticker)

            if news_list:
                sentiments = [analyze_sentiment(news['title'], sentiment_pipeline) for news in news_list]
                pos_count = sentiments.count("Positive")
                neg_count = sentiments.count("Negative")
                total = len(sentiments)
                pos_ratio = pos_count / total if total else 0
                neg_ratio = neg_count / total if total else 0

                if pos_ratio >= 0.25:
                    overall = "Positive"
                elif neg_ratio >= 0.75:
                    overall = "Negative"
                else:
                    overall = "Neutral"

                st.markdown(f"**πŸ“° Top News for `{ticker}`:**")
                for i, news in enumerate(news_list[:3]):
                    st.markdown(f"{i+1}. [{news['title']}]({news['link']}) β€” **{sentiments[i]}**")

                st.success(f"πŸ“ˆ **Overall Sentiment for `{ticker}`: {overall}**")
            else:
                st.info(f"No recent news found for `{ticker}`.")

            progress_bar.progress((idx + 1) / total_stocks)
            time.sleep(0.1)