|
import streamlit as st |
|
from transformers import pipeline |
|
import textwrap |
|
import numpy as np |
|
import soundfile as sf |
|
import tempfile |
|
import os |
|
from PIL import Image |
|
|
|
|
|
@st.cache_resource |
|
def load_pipelines(): |
|
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") |
|
storyer = pipeline("text-generation", model="aspis/gpt2-genre-story-generation") |
|
tts = pipeline("text-to-speech", model="facebook/mms-tts-eng") |
|
return captioner, storyer, tts |
|
|
|
captioner, storyer, tts = load_pipelines() |
|
|
|
|
|
def generate_content(image): |
|
|
|
pil_image = Image.open(image) |
|
|
|
|
|
caption = captioner(pil_image)[0]["generated_text"] |
|
st.write("**Caption:**", caption) |
|
|
|
|
|
prompt = ( |
|
f"Write a funny, warm children's story for ages 3-10, 50–100 words, " |
|
f"in third-person narrative, that describes this scene exactly: {caption} " |
|
f"mention the exact place or venue within {caption}" |
|
) |
|
raw = storyer( |
|
prompt, |
|
max_new_tokens=150, |
|
temperature=0.7, |
|
top_p=0.9, |
|
no_repeat_ngram_size=2, |
|
return_full_text=False |
|
)[0]["generated_text"].strip() |
|
|
|
|
|
words = raw.split() |
|
story = " ".join(words[:100]) |
|
st.write("**Story:**", story) |
|
|
|
|
|
chunks = textwrap.wrap(story, width=200) |
|
audio = np.concatenate([tts(chunk)["audio"].squeeze() for chunk in chunks]) |
|
|
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file: |
|
sf.write(temp_file.name, audio, tts.model.config.sampling_rate) |
|
temp_file_path = temp_file.name |
|
|
|
return caption, story, temp_file_path |
|
|
|
|
|
st.title("Image to Children's Story and Audio") |
|
st.write("Upload an image to generate a caption, a children's story, and an audio narration.") |
|
|
|
uploaded_image = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"]) |
|
|
|
if uploaded_image is not None: |
|
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True) |
|
if st.button("Generate Story and Audio"): |
|
with st.spinner("Generating content..."): |
|
caption, story, audio_path = generate_content(uploaded_image) |
|
st.audio(audio_path, format="audio/wav") |
|
|
|
os.remove(audio_path) |