Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,3 @@
|
|
1 |
-
"""
|
2 |
-
Streamlit application that generates children's stories from images with audio narration.
|
3 |
-
Uses Hugging Face transformers for image captioning, story generation, and text-to-speech.
|
4 |
-
"""
|
5 |
-
|
6 |
import streamlit as st
|
7 |
from transformers import pipeline
|
8 |
import textwrap
|
@@ -12,119 +7,67 @@ import tempfile
|
|
12 |
import os
|
13 |
from PIL import Image
|
14 |
|
15 |
-
#
|
16 |
-
MAX_STORY_WORDS = 100
|
17 |
-
TEXT_CHUNK_WIDTH = 200 # Characters per chunk for text-to-speech processing
|
18 |
-
AUDIO_SAMPLE_RATE = 16000 # 16kHz sampling rate for audio output
|
19 |
-
|
20 |
@st.cache_resource
|
21 |
-
def
|
22 |
-
"""
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
tuple: Three pipeline objects for:
|
27 |
-
- Image-to-text (captioning)
|
28 |
-
- Text generation (story)
|
29 |
-
- Text-to-speech
|
30 |
-
"""
|
31 |
-
caption_pipeline = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
32 |
-
story_pipeline = pipeline("text-generation", model="aspis/gpt2-genre-story-generation")
|
33 |
-
tts_pipeline = pipeline("text-to-speech", model="facebook/mms-tts-eng")
|
34 |
-
|
35 |
-
return caption_pipeline, story_pipeline, tts_pipeline
|
36 |
|
37 |
-
|
38 |
-
image_caption_pipeline, story_gen_pipeline, text_to_speech_pipeline = load_ml_pipelines()
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
Returns:
|
48 |
-
tuple: (caption_text, story_text, temp_audio_path)
|
49 |
-
"""
|
50 |
-
# Convert uploaded image to PIL format
|
51 |
-
pil_image = Image.open(uploaded_image)
|
52 |
-
|
53 |
-
# Generate image caption
|
54 |
-
caption_result = image_caption_pipeline(pil_image)[0]
|
55 |
-
caption_text = caption_result["generated_text"]
|
56 |
-
st.write("**Caption:**", caption_text)
|
57 |
|
58 |
-
#
|
59 |
-
|
60 |
f"Write a funny, warm children's story for ages 3-10, 50–100 words, "
|
61 |
-
f"in third-person narrative, that describes this scene exactly: {
|
62 |
-
f"mention the exact place or venue within {
|
63 |
)
|
64 |
-
|
65 |
-
|
66 |
-
story_output = story_gen_pipeline(
|
67 |
-
story_prompt,
|
68 |
max_new_tokens=150,
|
69 |
-
temperature=0.7,
|
70 |
-
top_p=0.9,
|
71 |
-
no_repeat_ngram_size=2,
|
72 |
return_full_text=False
|
73 |
)[0]["generated_text"].strip()
|
74 |
|
75 |
-
# Trim
|
76 |
-
|
77 |
-
|
78 |
-
st.write("**Story:**",
|
79 |
-
|
80 |
-
# Split story into chunks for text-to-speech processing
|
81 |
-
story_chunks = textwrap.wrap(trimmed_story, width=TEXT_CHUNK_WIDTH)
|
82 |
-
|
83 |
-
# Generate audio for each chunk and concatenate
|
84 |
-
audio_segments = [
|
85 |
-
text_to_speech_pipeline(chunk)["audio"].squeeze()
|
86 |
-
for chunk in story_chunks
|
87 |
-
]
|
88 |
-
concatenated_audio = np.concatenate(audio_segments)
|
89 |
|
90 |
-
#
|
91 |
-
|
92 |
-
|
93 |
-
temp_audio_path = temp_audio_file.name
|
94 |
|
95 |
-
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
def main():
|
99 |
-
"""Main Streamlit application layout and interaction logic."""
|
100 |
-
st.title("📖 Image to Children's Story with Audio Narration")
|
101 |
-
st.markdown("""
|
102 |
-
Upload an image to generate:
|
103 |
-
1. A descriptive caption
|
104 |
-
2. A children's story (ages 3-10)
|
105 |
-
3. Audio narration of the story
|
106 |
-
""")
|
107 |
|
108 |
-
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
st.image(image_file, caption="Uploaded Image", use_column_width=True)
|
112 |
-
|
113 |
-
if st.button("Generate Story and Audio"):
|
114 |
-
with st.spinner("Creating magical story..."):
|
115 |
-
try:
|
116 |
-
caption, story, audio_path = generate_story_content(image_file)
|
117 |
-
st.success("Here's your generated story!")
|
118 |
-
|
119 |
-
# Display audio player
|
120 |
-
st.audio(audio_path, format="audio/wav")
|
121 |
-
|
122 |
-
# Clean up temporary audio file
|
123 |
-
os.remove(audio_path)
|
124 |
-
except Exception as e:
|
125 |
-
st.error(f"Something went wrong: {str(e)}")
|
126 |
-
if 'audio_path' in locals():
|
127 |
-
os.remove(audio_path)
|
128 |
|
129 |
-
if
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
import textwrap
|
|
|
7 |
import os
|
8 |
from PIL import Image
|
9 |
|
10 |
+
# Initialize pipelines
|
|
|
|
|
|
|
|
|
11 |
@st.cache_resource
|
12 |
+
def load_pipelines():
|
13 |
+
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
14 |
+
storyer = pipeline("text-generation", model="aspis/gpt2-genre-story-generation")
|
15 |
+
tts = pipeline("text-to-speech", model="facebook/mms-tts-eng")
|
16 |
+
return captioner, storyer, tts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
captioner, storyer, tts = load_pipelines()
|
|
|
19 |
|
20 |
+
# Main logic
|
21 |
+
def generate_content(image):
|
22 |
+
# Convert Streamlit uploaded image to PIL image
|
23 |
+
pil_image = Image.open(image)
|
24 |
|
25 |
+
# Generate caption
|
26 |
+
caption = captioner(pil_image)[0]["generated_text"]
|
27 |
+
st.write("**Caption:**", caption)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
# Generate story
|
30 |
+
prompt = (
|
31 |
f"Write a funny, warm children's story for ages 3-10, 50–100 words, "
|
32 |
+
f"in third-person narrative, that describes this scene exactly: {caption} "
|
33 |
+
f"mention the exact place or venue within {caption}"
|
34 |
)
|
35 |
+
raw = storyer(
|
36 |
+
prompt,
|
|
|
|
|
37 |
max_new_tokens=150,
|
38 |
+
temperature=0.7,
|
39 |
+
top_p=0.9,
|
40 |
+
no_repeat_ngram_size=2,
|
41 |
return_full_text=False
|
42 |
)[0]["generated_text"].strip()
|
43 |
|
44 |
+
# Trim to max 100 words
|
45 |
+
words = raw.split()
|
46 |
+
story = " ".join(words[:100])
|
47 |
+
st.write("**Story:**", story)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Convert story to speech
|
50 |
+
chunks = textwrap.wrap(story, width=200)
|
51 |
+
audio = np.concatenate([tts(chunk)["audio"].squeeze() for chunk in chunks])
|
|
|
52 |
|
53 |
+
# Save audio to temporary file
|
54 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
|
55 |
+
sf.write(temp_file.name, audio, tts.model.config.sampling_rate)
|
56 |
+
temp_file_path = temp_file.name
|
57 |
|
58 |
+
return caption, story, temp_file_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
# Streamlit UI
|
61 |
+
st.title("Image to Children's Story and Audio")
|
62 |
+
st.write("Upload an image to generate a caption, a children's story, and an audio narration.")
|
63 |
|
64 |
+
uploaded_image = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
if uploaded_image is not None:
|
67 |
+
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
|
68 |
+
if st.button("Generate Story and Audio"):
|
69 |
+
with st.spinner("Generating content..."):
|
70 |
+
caption, story, audio_path = generate_content(uploaded_image)
|
71 |
+
st.audio(audio_path, format="audio/wav")
|
72 |
+
# Clean up temporary file
|
73 |
+
os.remove(audio_path)
|