Szeyu commited on
Commit
f0a6b70
·
verified ·
1 Parent(s): e35a81f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -15
app.py CHANGED
@@ -7,31 +7,37 @@ import tempfile
7
  import os
8
  from PIL import Image
9
 
10
- # Initialize pipelines
11
  @st.cache_resource
12
  def load_pipelines():
13
- captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
 
 
14
  storyer = pipeline("text-generation", model="aspis/gpt2-genre-story-generation")
 
15
  tts = pipeline("text-to-speech", model="facebook/mms-tts-eng")
16
  return captioner, storyer, tts
17
 
 
18
  captioner, storyer, tts = load_pipelines()
19
 
20
- # Main logic
21
  def generate_content(image):
22
- # Convert Streamlit uploaded image to PIL image
23
  pil_image = Image.open(image)
24
 
25
- # Generate caption
26
  caption = captioner(pil_image)[0]["generated_text"]
27
  st.write("**Caption:**", caption)
28
 
29
- # Generate story
30
  prompt = (
31
  f"Write a funny, warm children's story for ages 3-10, 50–100 words, "
32
  f"in third-person narrative, that describes this scene exactly: {caption} "
33
  f"mention the exact place or venue within {caption}"
34
  )
 
 
35
  raw = storyer(
36
  prompt,
37
  max_new_tokens=150,
@@ -41,33 +47,45 @@ def generate_content(image):
41
  return_full_text=False
42
  )[0]["generated_text"].strip()
43
 
44
- # Trim to max 100 words
45
  words = raw.split()
46
  story = " ".join(words[:100])
47
  st.write("**Story:**", story)
48
 
49
- # Convert story to speech
50
  chunks = textwrap.wrap(story, width=200)
 
 
51
  audio = np.concatenate([tts(chunk)["audio"].squeeze() for chunk in chunks])
52
 
53
- # Save audio to temporary file
54
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
55
  sf.write(temp_file.name, audio, tts.model.config.sampling_rate)
56
  temp_file_path = temp_file.name
57
 
58
  return caption, story, temp_file_path
59
 
60
- # Streamlit UI
61
  st.title("Image to Children's Story and Audio")
62
- st.write("Upload an image to generate a caption, a children's story, and an audio narration.")
 
 
 
 
63
 
64
- uploaded_image = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
 
65
 
66
  if uploaded_image is not None:
 
67
  st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
68
- if st.button("Generate Story and Audio"):
69
- with st.spinner("Generating content..."):
 
 
 
70
  caption, story, audio_path = generate_content(uploaded_image)
 
71
  st.audio(audio_path, format="audio/wav")
72
- # Clean up temporary file
73
  os.remove(audio_path)
 
7
  import os
8
  from PIL import Image
9
 
10
+ # Initialize pipelines with caching to avoid reloading
11
  @st.cache_resource
12
  def load_pipelines():
13
+ # Load pipeline for generating captions from images
14
+ captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
15
+ # Load pipeline for generating stories from text prompts
16
  storyer = pipeline("text-generation", model="aspis/gpt2-genre-story-generation")
17
+ # Load pipeline for converting text to speech
18
  tts = pipeline("text-to-speech", model="facebook/mms-tts-eng")
19
  return captioner, storyer, tts
20
 
21
+ # Load the pipelines once and reuse them
22
  captioner, storyer, tts = load_pipelines()
23
 
24
+ # Function to generate caption, story, and audio from an uploaded image
25
  def generate_content(image):
26
+ # Convert the uploaded image to a PIL image format
27
  pil_image = Image.open(image)
28
 
29
+ # Generate a caption based on the image content
30
  caption = captioner(pil_image)[0]["generated_text"]
31
  st.write("**Caption:**", caption)
32
 
33
+ # Create a prompt for generating a children's story
34
  prompt = (
35
  f"Write a funny, warm children's story for ages 3-10, 50–100 words, "
36
  f"in third-person narrative, that describes this scene exactly: {caption} "
37
  f"mention the exact place or venue within {caption}"
38
  )
39
+
40
+ # Generate the story based on the prompt
41
  raw = storyer(
42
  prompt,
43
  max_new_tokens=150,
 
47
  return_full_text=False
48
  )[0]["generated_text"].strip()
49
 
50
+ # Trim the generated story to a maximum of 100 words
51
  words = raw.split()
52
  story = " ".join(words[:100])
53
  st.write("**Story:**", story)
54
 
55
+ # Split the story into chunks of 200 characters for text-to-speech processing
56
  chunks = textwrap.wrap(story, width=200)
57
+
58
+ # Generate and concatenate audio for each text chunk
59
  audio = np.concatenate([tts(chunk)["audio"].squeeze() for chunk in chunks])
60
 
61
+ # Save the concatenated audio to a temporary WAV file
62
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
63
  sf.write(temp_file.name, audio, tts.model.config.sampling_rate)
64
  temp_file_path = temp_file.name
65
 
66
  return caption, story, temp_file_path
67
 
68
+ # Streamlit UI for the application
69
  st.title("Image to Children's Story and Audio")
70
+ st.markdown("""
71
+ Upload an image below to generate a caption, a funny children's story,
72
+ and an audio narration based on the image. The story will be tailored
73
+ for children aged 3-10.
74
+ """)
75
 
76
+ # File uploader for image input
77
+ uploaded_image = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"], help="Supported formats: JPG, JPEG, PNG")
78
 
79
  if uploaded_image is not None:
80
+ # Display the uploaded image with a caption
81
  st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
82
+
83
+ # Button to trigger content generation
84
+ if st.button("Generate Story and Audio", help="Click to create the story and audio"):
85
+ # Show a spinner while content is being generated
86
+ with st.spinner("Generating your story and audio narration..."):
87
  caption, story, audio_path = generate_content(uploaded_image)
88
+ # Display the audio player with the generated narration
89
  st.audio(audio_path, format="audio/wav")
90
+ # Remove the temporary audio file after use
91
  os.remove(audio_path)