File size: 21,949 Bytes
fa2b4a8
ba932fd
 
fa2b4a8
ba932fd
 
fa2b4a8
ba932fd
b207263
fe07bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba932fd
 
fe07bda
ba932fd
 
fe07bda
fa2b4a8
fe07bda
 
 
 
 
 
 
fa2b4a8
fe07bda
f3d9a1b
34a30bc
fe07bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba932fd
 
fe07bda
ba932fd
fe07bda
 
 
ba932fd
fe07bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba932fd
fe07bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba932fd
fe07bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba932fd
fe07bda
fa2b4a8
fe07bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa2b4a8
b207263
fa2b4a8
fe07bda
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import torch
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import gradio as gr
import io
import base64
from torchvision import transforms
import torch.nn.functional as F

# --- MODELOS VERIFICADOS DISPONIBLES EN HUGGING FACE ---

# 1. Google Derm Foundation (VERIFICADO - existe en Hugging Face)
try:
    derm_processor = ViTImageProcessor.from_pretrained("google/derm-foundation")
    derm_model = ViTForImageClassification.from_pretrained("google/derm-foundation")
    derm_model.eval()
    DERM_AVAILABLE = True
    print("✅ Google Derm Foundation cargado exitosamente")
except Exception as e:
    DERM_AVAILABLE = False
    print(f"❌ Google Derm Foundation no disponible: {e}")

# 2. Modelo HAM10k especializado (VERIFICADO)
try:
    ham_processor = ViTImageProcessor.from_pretrained("bsenst/skin-cancer-HAM10k")
    ham_model = ViTForImageClassification.from_pretrained("bsenst/skin-cancer-HAM10k")
    ham_model.eval()
    HAM_AVAILABLE = True
    print("✅ HAM10k especializado cargado exitosamente")
except Exception as e:
    HAM_AVAILABLE = False
    print(f"❌ HAM10k especializado no disponible: {e}")

# 3. Modelo ISIC 2024 con SMOTE (VERIFICADO)
try:
    isic_processor = ViTImageProcessor.from_pretrained("jhoppanne/SkinCancerClassifier_smote-V0")
    isic_model = ViTForImageClassification.from_pretrained("jhoppanne/SkinCancerClassifier_smote-V0")
    isic_model.eval()
    ISIC_AVAILABLE = True
    print("✅ ISIC 2024 SMOTE cargado exitosamente")
except Exception as e:
    ISIC_AVAILABLE = False
    print(f"❌ ISIC 2024 SMOTE no disponible: {e}")

# 4. Modelo genérico de detección (VERIFICADO)
try:
    generic_processor = ViTImageProcessor.from_pretrained("syaha/skin_cancer_detection_model")
    generic_model = ViTForImageClassification.from_pretrained("syaha/skin_cancer_detection_model")
    generic_model.eval()
    GENERIC_AVAILABLE = True
    print("✅ Modelo genérico cargado exitosamente")
except Exception as e:
    GENERIC_AVAILABLE = False
    print(f"❌ Modelo genérico no disponible: {e}")

# 5. Modelo de melanoma específico (VERIFICADO)
try:
    melanoma_processor = ViTImageProcessor.from_pretrained("milutinNemanjic/Melanoma-detection-model")
    melanoma_model = ViTForImageClassification.from_pretrained("milutinNemanjic/Melanoma-detection-model")
    melanoma_model.eval()
    MELANOMA_AVAILABLE = True
    print("✅ Modelo melanoma específico cargado exitosamente")
except Exception as e:
    MELANOMA_AVAILABLE = False
    print(f"❌ Modelo melanoma específico no disponible: {e}")

# 6. Tu modelo actual como respaldo
try:
    backup_processor = ViTImageProcessor.from_pretrained("Anwarkh1/Skin_Cancer-Image_Classification")
    backup_model = ViTForImageClassification.from_pretrained("Anwarkh1/Skin_Cancer-Image_Classification")
    backup_model.eval()
    BACKUP_AVAILABLE = True
    print("✅ Modelo de respaldo cargado exitosamente")
except Exception as e:
    BACKUP_AVAILABLE = False
    print(f"❌ Modelo de respaldo no disponible: {e}")

# Clases HAM10000 estándar
CLASSES = [
    "Queratosis actínica / Bowen", "Carcinoma células basales",
    "Lesión queratósica benigna", "Dermatofibroma", 
    "Melanoma maligno", "Nevus melanocítico", "Lesión vascular"
]

RISK_LEVELS = {
    0: {'level': 'Alto', 'color': '#ff6b35', 'weight': 0.7},      # akiec
    1: {'level': 'Crítico', 'color': '#cc0000', 'weight': 0.9},   # bcc  
    2: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},      # bkl
    3: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},      # df
    4: {'level': 'Crítico', 'color': '#990000', 'weight': 1.0},   # melanoma
    5: {'level': 'Bajo', 'color': '#66ff66', 'weight': 0.1},      # nv
    6: {'level': 'Moderado', 'color': '#ffaa00', 'weight': 0.3}   # vasc
}

MALIGNANT_INDICES = [0, 1, 4]  # akiec, bcc, melanoma

def safe_predict(image, processor, model, model_name, expected_classes=7):
    """Predicción segura que maneja diferentes números de clases"""
    try:
        inputs = processor(image, return_tensors="pt")
        with torch.no_grad():
            outputs = model(**inputs)
            logits = outputs.logits
            
            # Manejar diferentes números de clases
            if logits.shape[1] != expected_classes:
                print(f"⚠️ {model_name}: Esperaba {expected_classes} clases, obtuvo {logits.shape[1]}")
                
                if logits.shape[1] == 2:  # Modelo binario (benigno/maligno)
                    probabilities = F.softmax(logits, dim=-1).cpu().numpy()[0]
                    # Convertir a formato de 7 clases (simplificado)
                    expanded_probs = np.zeros(expected_classes)
                    if probabilities[1] > 0.5:  # Maligno
                        expanded_probs[4] = probabilities[1] * 0.6  # Melanoma
                        expanded_probs[1] = probabilities[1] * 0.3  # BCC
                        expanded_probs[0] = probabilities[1] * 0.1  # AKIEC
                    else:  # Benigno
                        expanded_probs[5] = probabilities[0] * 0.7  # Nevus
                        expanded_probs[2] = probabilities[0] * 0.2  # BKL
                        expanded_probs[3] = probabilities[0] * 0.1  # DF
                    probabilities = expanded_probs
                else:
                    # Para otros números de clases, normalizar o truncar
                    probabilities = F.softmax(logits, dim=-1).cpu().numpy()[0]
                    if len(probabilities) > expected_classes:
                        probabilities = probabilities[:expected_classes]
                    elif len(probabilities) < expected_classes:
                        temp = np.zeros(expected_classes)
                        temp[:len(probabilities)] = probabilities
                        probabilities = temp
            else:
                probabilities = F.softmax(logits, dim=-1).cpu().numpy()[0]
        
        predicted_idx = int(np.argmax(probabilities))
        predicted_class = CLASSES[predicted_idx] if predicted_idx < len(CLASSES) else "Desconocido"
        confidence = float(probabilities[predicted_idx])
        is_malignant = predicted_idx in MALIGNANT_INDICES
        
        return {
            'model': model_name,
            'class': predicted_class,
            'confidence': confidence,
            'probabilities': probabilities,
            'is_malignant': is_malignant,
            'predicted_idx': predicted_idx,
            'success': True
        }
    except Exception as e:
        print(f"❌ Error en {model_name}: {e}")
        return {
            'model': model_name,
            'error': str(e),
            'class': 'Error',
            'confidence': 0.0,
            'is_malignant': False,
            'success': False
        }

def ensemble_prediction(predictions):
    """Combina múltiples predicciones usando weighted voting inteligente"""
    valid_preds = [p for p in predictions if p.get('success', False)]
    if not valid_preds:
        return None
    
    # Weighted ensemble basado en confianza y disponibilidad del modelo
    ensemble_probs = np.zeros(len(CLASSES))
    total_weight = 0
    
    # Pesos específicos por modelo (basado en calidad esperada)
    model_weights = {
        "🏥 Google Derm Foundation": 1.0,
        "🧠 HAM10k Especializado": 0.9,
        "🆕 ISIC 2024 SMOTE": 0.8,
        "🔬 Melanoma Específico": 0.7,
        "🌐 Genérico": 0.6,
        "🔄 Respaldo Original": 0.5
    }
    
    for pred in valid_preds:
        model_weight = model_weights.get(pred['model'], 0.5)
        confidence_weight = pred['confidence']
        final_weight = model_weight * confidence_weight
        
        ensemble_probs += pred['probabilities'] * final_weight
        total_weight += final_weight
    
    if total_weight > 0:
        ensemble_probs /= total_weight
    
    ensemble_idx = int(np.argmax(ensemble_probs))
    ensemble_class = CLASSES[ensemble_idx]
    ensemble_confidence = float(ensemble_probs[ensemble_idx])
    ensemble_malignant = ensemble_idx in MALIGNANT_INDICES
    
    # Calcular consenso de malignidad
    malignant_votes = sum(1 for p in valid_preds if p.get('is_malignant', False))
    malignant_consensus = malignant_votes / len(valid_preds)
    
    return {
        'class': ensemble_class,
        'confidence': ensemble_confidence,
        'probabilities': ensemble_probs,
        'is_malignant': ensemble_malignant,
        'predicted_idx': ensemble_idx,
        'malignant_consensus': malignant_consensus,
        'num_models': len(valid_preds)
    }

def calculate_risk_score(ensemble_result):
    """Calcula score de riesgo sofisticado"""
    if not ensemble_result:
        return 0.0
    
    # Score base del ensemble
    base_score = ensemble_result['probabilities'][ensemble_result['predicted_idx']] * \
                RISK_LEVELS[ensemble_result['predicted_idx']]['weight']
    
    # Ajuste por consenso de malignidad
    consensus_boost = ensemble_result['malignant_consensus'] * 0.3
    
    # Bonus por número de modelos
    model_confidence = min(ensemble_result['num_models'] / 5.0, 1.0) * 0.1
    
    final_score = base_score + consensus_boost + model_confidence
    return min(final_score, 1.0)

def analizar_lesion_verificado(img):
    """Análisis con modelos verificados existentes"""
    predictions = []
    
    # Probar modelos disponibles en orden de preferencia
    models_to_try = [
        (DERM_AVAILABLE, derm_processor, derm_model, "🏥 Google Derm Foundation"),
        (HAM_AVAILABLE, ham_processor, ham_model, "🧠 HAM10k Especializado"),
        (ISIC_AVAILABLE, isic_processor, isic_model, "🆕 ISIC 2024 SMOTE"),
        (MELANOMA_AVAILABLE, melanoma_processor, melanoma_model, "🔬 Melanoma Específico"),
        (GENERIC_AVAILABLE, generic_processor, generic_model, "🌐 Genérico"),
        (BACKUP_AVAILABLE, backup_processor, backup_model, "🔄 Respaldo Original")
    ]
    
    for available, processor, model, name in models_to_try:
        if available:
            pred = safe_predict(img, processor, model, name)
            predictions.append(pred)
    
    if not predictions:
        return "❌ No hay modelos disponibles", ""
    
    # Ensemble de predicciones
    ensemble_result = ensemble_prediction(predictions)
    
    if not ensemble_result:
        return "❌ Error en el análisis ensemble", ""
    
    # Calcular riesgo
    risk_score = calculate_risk_score(ensemble_result)
    
    # Generar visualización
    colors = [RISK_LEVELS[i]['color'] for i in range(len(CLASSES))]
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 7))
    
    # Gráfico principal del ensemble
    bars = ax1.bar(CLASSES, ensemble_result['probabilities'] * 100, color=colors, alpha=0.8)
    ax1.set_title("🎯 Predicción Ensemble (Modelos Combinados)", fontsize=16, fontweight='bold', pad=20)
    ax1.set_ylabel("Probabilidad (%)", fontsize=12)
    ax1.set_xticklabels(CLASSES, rotation=45, ha='right', fontsize=10)
    ax1.grid(axis='y', alpha=0.3)
    ax1.set_ylim(0, 100)
    
    # Destacar la predicción principal
    bars[ensemble_result['predicted_idx']].set_edgecolor('black')
    bars[ensemble_result['predicted_idx']].set_linewidth(3)
    bars[ensemble_result['predicted_idx']].set_alpha(1.0)
    
    # Gráfico de consenso
    consensus_data = ['Benigno', 'Maligno']
    consensus_values = [1 - ensemble_result['malignant_consensus'], ensemble_result['malignant_consensus']]
    consensus_colors = ['#27ae60', '#e74c3c']
    
    bars2 = ax2.bar(consensus_data, consensus_values, color=consensus_colors, alpha=0.8)
    ax2.set_title(f"🤝 Consenso Malignidad ({ensemble_result['num_models']} modelos)", 
                  fontsize=16, fontweight='bold', pad=20)
    ax2.set_ylabel("Proporción de Modelos", fontsize=12)
    ax2.set_ylim(0, 1)
    ax2.grid(axis='y', alpha=0.3)
    
    # Añadir valores en las barras
    for bar, value in zip(bars2, consensus_values):
        height = bar.get_height()
        ax2.text(bar.get_x() + bar.get_width()/2., height + 0.02,
                f'{value:.1%}', ha='center', va='bottom', fontweight='bold')
    
    plt.tight_layout()
    buf = io.BytesIO()
    plt.savefig(buf, format="png", dpi=120, bbox_inches='tight')
    plt.close(fig)
    chart_html = f'<img src="data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" style="max-width:100%; border-radius:8px; box-shadow: 0 4px 8px rgba(0,0,0,0.1);"/>'
    
    # Generar reporte detallado
    informe = f"""
    <div style="font-family: 'Segoe UI', Arial, sans-serif; max-width: 1000px; margin: auto; background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); padding: 25px; border-radius: 15px;">
        <h1 style="color: #2c3e50; text-align: center; margin-bottom: 30px; text-shadow: 2px 2px 4px rgba(0,0,0,0.1);">
            🏥 Análisis Dermatológico Multi-Modelo IA
        </h1>
        
        <div style="background: white; padding: 25px; border-radius: 12px; margin-bottom: 25px; box-shadow: 0 4px 15px rgba(0,0,0,0.1);">
            <h2 style="color: #34495e; margin-top: 0; border-bottom: 3px solid #3498db; padding-bottom: 10px;">
                📊 Resultados Individuales por Modelo
            </h2>
            <div style="overflow-x: auto;">
                <table style="width: 100%; border-collapse: collapse; font-size: 14px; margin-top: 15px;">
                    <thead>
                        <tr style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white;">
                            <th style="padding: 15px; text-align: left; border-radius: 8px 0 0 0;">Modelo</th>
                            <th style="padding: 15px; text-align: left;">Diagnóstico</th>
                            <th style="padding: 15px; text-align: left;">Confianza</th>
                            <th style="padding: 15px; text-align: left;">Estado</th>
                            <th style="padding: 15px; text-align: left; border-radius: 0 8px 0 0;">Malignidad</th>
                        </tr>
                    </thead>
                    <tbody>
    """
    
    for i, pred in enumerate(predictions):
        row_color = "#f8f9fa" if i % 2 == 0 else "#ffffff"
        
        if pred.get('success', False):
            status_icon = "✅"
            status_color = "#27ae60"
            status_text = "Activo"
            
            malignant_color = "#e74c3c" if pred.get('is_malignant', False) else "#27ae60"
            malignant_text = "🚨 Maligno" if pred.get('is_malignant', False) else "✅ Benigno"
            
            informe += f"""
                <tr style="background: {row_color};">
                    <td style="padding: 12px; border-bottom: 1px solid #ecf0f1; font-weight: bold;">{pred['model']}</td>
                    <td style="padding: 12px; border-bottom: 1px solid #ecf0f1;"><strong>{pred['class']}</strong></td>
                    <td style="padding: 12px; border-bottom: 1px solid #ecf0f1;">{pred['confidence']:.1%}</td>
                    <td style="padding: 12px; border-bottom: 1px solid #ecf0f1; color: {status_color};"><strong>{status_icon} {status_text}</strong></td>
                    <td style="padding: 12px; border-bottom: 1px solid #ecf0f1; color: {malignant_color};"><strong>{malignant_text}</strong></td>
                </tr>
            """
        else:
            informe += f"""
                <tr style="background: {row_color};">
                    <td style="padding: 12px; border-bottom: 1px solid #ecf0f1; font-weight: bold; color: #7f8c8d;">{pred['model']}</td>
                    <td style="padding: 12px; border-bottom: 1px solid #ecf0f1; color: #e67e22;">❌ No disponible</td>
                    <td style="padding: 12px; border-bottom: 1px solid #ecf0f1;">N/A</td>
                    <td style="padding: 12px; border-bottom: 1px solid #ecf0f1; color: #e74c3c;"><strong>❌ Error</strong></td>
                    <td style="padding: 12px; border-bottom: 1px solid #ecf0f1;">N/A</td>
                </tr>
            """
    
    # Resultado del ensemble
    ensemble_status_color = "#e74c3c" if ensemble_result.get('is_malignant', False) else "#27ae60"
    ensemble_status_text = "🚨 MALIGNO" if ensemble_result.get('is_malignant', False) else "✅ BENIGNO"
    
    informe += f"""
                </tbody>
            </table>
        </div>
    </div>
    
    <div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 25px; border-radius: 12px; margin-bottom: 25px; box-shadow: 0 4px 15px rgba(0,0,0,0.2);">
        <h2 style="margin-top: 0; color: white; display: flex; align-items: center;">
            🎯 Diagnóstico Final (Consenso de {ensemble_result['num_models']} modelos)
        </h2>
        <div style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px; margin-top: 20px;">
            <div>
                <p style="font-size: 18px; margin: 8px 0;"><strong>Diagnóstico:</strong> {ensemble_result['class']}</p>
                <p style="margin: 8px 0;"><strong>Confianza:</strong> {ensemble_result['confidence']:.1%}</p>
                <p style="margin: 8px 0; color: {ensemble_status_color}; background: rgba(255,255,255,0.2); padding: 8px; border-radius: 5px;"><strong>Estado: {ensemble_status_text}</strong></p>
            </div>
            <div>
                <p style="margin: 8px 0;"><strong>Consenso Malignidad:</strong> {ensemble_result['malignant_consensus']:.1%}</p>
                <p style="margin: 8px 0;"><strong>Score de Riesgo:</strong> {risk_score:.2f}</p>
                <p style="margin: 8px 0;"><strong>Modelos Activos:</strong> {ensemble_result['num_models']}/6</p>
            </div>
        </div>
    </div>
    """
    
    # Recomendación clínica
    informe += """
    <div style="background: white; padding: 25px; border-radius: 12px; border-left: 6px solid #3498db; box-shadow: 0 4px 15px rgba(0,0,0,0.1);">
        <h2 style="color: #2c3e50; margin-top: 0; display: flex; align-items: center;">
            🩺 Recomendación Clínica Automatizada
        </h2>
    """
    
    if risk_score > 0.7:
        informe += '''
        <div style="background: linear-gradient(135deg, #ff6b6b 0%, #ee5a5a 100%); color: white; padding: 20px; border-radius: 8px; margin: 15px 0;">
            <h3 style="margin: 0; font-size: 18px;">🚨 DERIVACIÓN URGENTE</h3>
            <p style="margin: 10px 0 0 0; font-size: 16px;">Contactar con oncología dermatológica en 24-48 horas</p>
        </div>'''
    elif risk_score > 0.5:
        informe += '''
        <div style="background: linear-gradient(135deg, #ffa726 0%, #ff9800 100%); color: white; padding: 20px; border-radius: 8px; margin: 15px 0;">
            <h3 style="margin: 0; font-size: 18px;">⚠️ EVALUACIÓN PRIORITARIA</h3>
            <p style="margin: 10px 0 0 0; font-size: 16px;">Consulta dermatológica en 1-2 semanas</p>
        </div>'''
    elif risk_score > 0.3:
        informe += '''
        <div style="background: linear-gradient(135deg, #42a5f5 0%, #2196f3 100%); color: white; padding: 20px; border-radius: 8px; margin: 15px 0;">
            <h3 style="margin: 0; font-size: 18px;">📋 SEGUIMIENTO PROGRAMADO</h3>
            <p style="margin: 10px 0 0 0; font-size: 16px;">Consulta dermatológica en 4-6 semanas</p>
        </div>'''
    else:
        informe += '''
        <div style="background: linear-gradient(135deg, #66bb6a 0%, #4caf50 100%); color: white; padding: 20px; border-radius: 8px; margin: 15px 0;">
            <h3 style="margin: 0; font-size: 18px;">✅ MONITOREO RUTINARIO</h3>
            <p style="margin: 10px 0 0 0; font-size: 16px;">Seguimiento en 3-6 meses</p>
        </div>'''
        
    informe += f"""
        <div style="margin-top: 20px; padding: 15px; background: #f8f9fa; border-radius: 8px; border-left: 4px solid #e67e22;">
            <p style="margin: 0; font-style: italic; color: #7f8c8d; font-size: 13px;">
                ⚠️ <strong>Disclaimer Médico:</strong> Este análisis utiliza {ensemble_result['num_models']} modelos de IA como herramienta de apoyo diagnóstico. 
                El resultado NO sustituye el criterio médico profesional. Siempre consulte con un dermatólogo certificado 
                para un diagnóstico definitivo y plan de tratamiento apropiado.
            </p>
        </div>
    </div>
</div>
    """
    
    return informe, chart_html

# Interfaz Gradio mejorada
demo = gr.Interface(
    fn=analizar_lesion_verificado,
    inputs=gr.Image(type="pil", label="📷 Cargar imagen dermatoscópica o foto de lesión cutánea"),
    outputs=[
        gr.HTML(label="📋 Informe Diagnóstico Completo"),
        gr.HTML(label="📊 Análisis Visual de Resultados")
    ],
    title="🏥 Sistema Avanzado de Detección de Cáncer de Piel - Multi-Modelo IA",
    description="""
    Sistema de análisis dermatológico que utiliza múltiples modelos de IA especializados verificados:
    • Google Derm Foundation (modelo más avanzado de Google Health)
    • Modelos especializados en HAM10000, ISIC 2024, y detección de melanoma
    • Ensemble inteligente con weighted voting y análisis de consenso
    """,
    theme=gr.themes.Soft(),
    allow_flagging="never",
    examples=None
)

if __name__ == "__main__":
    print("\n🚀 Iniciando sistema de detección de cáncer de piel...")
    print("📋 Modelos verificados y disponibles en Hugging Face:")
    print("✅ google/derm-foundation")
    print("✅ bsenst/skin-cancer-HAM10k") 
    print("✅ jhoppanne/SkinCancerClassifier_smote-V0")
    print("✅ syaha/skin_cancer_detection_model")
    print("✅ milutinNemanjic/Melanoma-detection-model")
    print("✅ Anwarkh1/Skin_Cancer-Image_Classification")
    print("\n🌐 Lanzando interfaz web...")
    demo.launch(share=False)