LoloSemper commited on
Commit
f3d9a1b
·
verified ·
1 Parent(s): e44c49f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -85
app.py CHANGED
@@ -1,6 +1,5 @@
1
  import torch
2
  from transformers import ViTImageProcessor, ViTForImageClassification
3
- from transformers import AutoFeatureExtractor, AutoModelForImageClassification
4
  from fastai.learner import load_learner
5
  from fastai.vision.core import PILImage
6
  from PIL import Image
@@ -9,84 +8,72 @@ import numpy as np
9
  import gradio as gr
10
  import io
11
  import base64
12
- import os
13
- import zipfile
14
 
15
- # --- Cargar modelo ViT ---
 
 
 
 
 
 
16
  MODEL_NAME = "ahishamm/vit-base-HAM-10000-sharpened-patch-32"
17
  feature_extractor = ViTImageProcessor.from_pretrained(MODEL_NAME)
18
  model_vit = ViTForImageClassification.from_pretrained(MODEL_NAME)
19
  model_vit.eval()
20
 
21
- # --- Cargar modelos Fast.ai ---
22
  model_malignancy = load_learner("ada_learn_malben.pkl")
23
  model_norm2000 = load_learner("ada_learn_skin_norm2000.pkl")
24
 
25
- # --- Cargar modelo EfficientNetB3 desde Hugging Face ---
26
- model_effnet = AutoModelForImageClassification.from_pretrained("syaha/skin_cancer_detection_model")
27
- extractor_effnet = AutoFeatureExtractor.from_pretrained("syaha/skin_cancer_detection_model")
28
- model_effnet.eval()
29
-
30
  CLASSES = [
31
  "Queratosis actínica / Bowen", "Carcinoma células basales",
32
  "Lesión queratósica benigna", "Dermatofibroma",
33
  "Melanoma maligno", "Nevus melanocítico", "Lesión vascular"
34
  ]
35
-
36
  RISK_LEVELS = {
37
  0: {'level': 'Moderado', 'color': '#ffaa00', 'weight': 0.6},
38
- 1: {'level': 'Alto', 'color': '#ff4444', 'weight': 0.8},
39
- 2: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
40
- 3: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
41
- 4: {'level': 'Crítico', 'color': '#cc0000', 'weight': 1.0},
42
- 5: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
43
- 6: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1}
44
  }
45
-
46
- MALIGNANT_INDICES = [0, 1, 4] # clases de riesgo alto/crítico
47
 
48
  def analizar_lesion_combined(img):
49
- try:
50
- img_fastai = PILImage.create(img)
51
- inputs = feature_extractor(img, return_tensors="pt")
52
- with torch.no_grad():
53
- outputs = model_vit(**inputs)
54
- probs_vit = outputs.logits.softmax(dim=-1).cpu().numpy()[0]
55
- pred_idx_vit = int(np.argmax(probs_vit))
56
- pred_class_vit = CLASSES[pred_idx_vit]
57
- confidence_vit = probs_vit[pred_idx_vit]
58
- except Exception as e:
59
- pred_class_vit = "Error"
60
- confidence_vit = 0.0
61
- probs_vit = np.zeros(len(CLASSES))
62
-
63
- try:
64
- pred_fast_malignant, _, probs_fast_mal = model_malignancy.predict(img_fastai)
65
- prob_malignant = float(probs_fast_mal[1])
66
- except:
67
- prob_malignant = 0.0
68
-
69
- try:
70
- pred_fast_type, _, _ = model_norm2000.predict(img_fastai)
71
- except:
72
- pred_fast_type = "Error"
73
-
74
- try:
75
- inputs_eff = extractor_effnet(images=img, return_tensors="pt")
76
- with torch.no_grad():
77
- outputs_eff = model_effnet(**inputs_eff)
78
- probs_eff = outputs_eff.logits.softmax(dim=-1).cpu().numpy()[0]
79
- pred_idx_eff = int(np.argmax(probs_eff))
80
- confidence_eff = probs_eff[pred_idx_eff]
81
- pred_class_eff = model_effnet.config.id2label[str(pred_idx_eff)]
82
- except Exception as e:
83
- pred_class_eff = "Error"
84
- confidence_eff = 0.0
85
-
86
- colors_bars = [RISK_LEVELS[i]['color'] for i in range(7)]
87
  fig, ax = plt.subplots(figsize=(8, 3))
88
- ax.bar(CLASSES, probs_vit*100, color=colors_bars)
89
- ax.set_title("Probabilidad ViT por tipo de lesión")
90
  ax.set_ylabel("Probabilidad (%)")
91
  ax.set_xticks(np.arange(len(CLASSES)))
92
  ax.set_xticklabels(CLASSES, rotation=45, ha='right')
@@ -95,45 +82,39 @@ def analizar_lesion_combined(img):
95
  buf = io.BytesIO()
96
  plt.savefig(buf, format="png")
97
  plt.close(fig)
98
- img_b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
99
- html_chart = f'<img src="data:image/png;base64,{img_b64}" style="max-width:100%"/>'
100
 
101
  informe = f"""
102
  <div style="font-family:sans-serif; max-width:800px; margin:auto">
103
- <h2>🧪 Diagnóstico por 4 modelos de IA</h2>
104
- <table style="border-collapse: collapse; width:100%; font-size:16px">
105
- <tr><th style="text-align:left">🔍 Modelo</th><th>Resultado</th><th>Confianza</th></tr>
106
- <tr><td>🧠 ViT (transformer)</td><td><b>{pred_class_vit}</b></td><td>{confidence_vit:.1%}</td></tr>
107
- <tr><td>🧬 Fast.ai (clasificación)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr>
108
- <tr><td>⚠️ Fast.ai (malignidad)</td><td><b>{"Maligno" if prob_malignant > 0.5 else "Benigno"}</b></td><td>{prob_malignant:.1%}</td></tr>
109
- <tr><td>🔬 EfficientNetB3 (HAM10000)</td><td><b>{pred_class_eff}</b></td><td>{confidence_eff:.1%}</td></tr>
110
- </table>
111
- <br>
112
- <b>🧪 Recomendación automática:</b><br>
113
  """
114
-
115
- cancer_risk_score = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7))
116
- if prob_malignant > 0.7 or cancer_risk_score > 0.6:
117
  informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica"
118
- elif prob_malignant > 0.4 or cancer_risk_score > 0.4:
119
  informe += "⚠️ <b>ALTO RIESGO</b> – Consulta con dermatólogo en 7 días"
120
- elif cancer_risk_score > 0.2:
121
- informe += "📋 <b>RIESGO MODERADO</b> – Evaluación programada (2-4 semanas)"
122
  else:
123
  informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)"
 
124
 
125
- informe += "</div>"
126
  return informe, html_chart
127
 
128
- # Interfaz Gradio
129
  demo = gr.Interface(
130
  fn=analizar_lesion_combined,
131
- inputs=gr.Image(type="pil", label="Sube una imagen de la lesión"),
132
- outputs=[gr.HTML(label="Informe combinado"), gr.HTML(label="Gráfico ViT")],
133
- title="Detector de Lesiones Cutáneas (ViT + Fast.ai + EfficientNetB3)",
134
- description="Comparación entre ViT transformer (HAM10000), dos modelos Fast.ai y un modelo EfficientNetB3.",
135
- flagging_mode="never"
136
  )
137
-
138
  if __name__ == "__main__":
139
  demo.launch()
 
 
1
  import torch
2
  from transformers import ViTImageProcessor, ViTForImageClassification
 
3
  from fastai.learner import load_learner
4
  from fastai.vision.core import PILImage
5
  from PIL import Image
 
8
  import gradio as gr
9
  import io
10
  import base64
 
 
11
 
12
+ # --- Cargar modelo ViT preentrenado fine‑tuned HAM10000 ---
13
+ TF_MODEL_NAME = "Anwarkh1/Skin_Cancer-Image_Classification"
14
+ feature_extractor_tf = ViTImageProcessor.from_pretrained(TF_MODEL_NAME)
15
+ model_tf_vit = ViTForImageClassification.from_pretrained(TF_MODEL_NAME)
16
+ model_tf_vit.eval()
17
+
18
+ # 🔹 Cargar modelo ViT base
19
  MODEL_NAME = "ahishamm/vit-base-HAM-10000-sharpened-patch-32"
20
  feature_extractor = ViTImageProcessor.from_pretrained(MODEL_NAME)
21
  model_vit = ViTForImageClassification.from_pretrained(MODEL_NAME)
22
  model_vit.eval()
23
 
24
+ # 🔹 Cargar modelos Fast.ai locales
25
  model_malignancy = load_learner("ada_learn_malben.pkl")
26
  model_norm2000 = load_learner("ada_learn_skin_norm2000.pkl")
27
 
28
+ # Clases estándar de HAM10000
 
 
 
 
29
  CLASSES = [
30
  "Queratosis actínica / Bowen", "Carcinoma células basales",
31
  "Lesión queratósica benigna", "Dermatofibroma",
32
  "Melanoma maligno", "Nevus melanocítico", "Lesión vascular"
33
  ]
 
34
  RISK_LEVELS = {
35
  0: {'level': 'Moderado', 'color': '#ffaa00', 'weight': 0.6},
36
+ 1: {'level': 'Alto', 'color': '#ff4444', 'weight': 0.8},
37
+ 2: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
38
+ 3: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
39
+ 4: {'level': 'Crítico', 'color': '#cc0000', 'weight': 1.0},
40
+ 5: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
41
+ 6: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1}
42
  }
43
+ MALIGNANT_INDICES = [0, 1, 4] # akiec, bcc, melanoma
 
44
 
45
  def analizar_lesion_combined(img):
46
+ img_fastai = PILImage.create(img)
47
+
48
+ # ViT base
49
+ inputs = feature_extractor(img, return_tensors="pt")
50
+ with torch.no_grad():
51
+ outputs = model_vit(**inputs)
52
+ probs_vit = outputs.logits.softmax(dim=-1).cpu().numpy()[0]
53
+ idx_vit = int(np.argmax(probs_vit))
54
+ class_vit = CLASSES[idx_vit]
55
+ conf_vit = probs_vit[idx_vit]
56
+
57
+ # Fast.ai modelos
58
+ _, _, probs_mal = model_malignancy.predict(img_fastai)
59
+ prob_malign = float(probs_mal[1])
60
+ pred_fast_type, _, _ = model_norm2000.predict(img_fastai)
61
+
62
+ # ViT pre-trained fine-tuned (último modelo recomendado)
63
+ inputs_tf = feature_extractor_tf(img, return_tensors="pt")
64
+ with torch.no_grad():
65
+ outputs_tf = model_tf_vit(**inputs_tf)
66
+ probs_tf = outputs_tf.logits.softmax(dim=-1).cpu().numpy()[0]
67
+ idx_tf = int(np.argmax(probs_tf))
68
+ class_tf_model = CLASSES[idx_tf]
69
+ conf_tf = probs_tf[idx_tf]
70
+ mal_tf = "Maligno" if idx_tf in MALIGNANT_INDICES else "Benigno"
71
+
72
+ # Gráfico ViT base
73
+ colors = [RISK_LEVELS[i]['color'] for i in range(7)]
 
 
 
 
 
 
 
 
 
 
74
  fig, ax = plt.subplots(figsize=(8, 3))
75
+ ax.bar(CLASSES, probs_vit*100, color=colors)
76
+ ax.set_title("Probabilidad ViT base por tipo de lesión")
77
  ax.set_ylabel("Probabilidad (%)")
78
  ax.set_xticks(np.arange(len(CLASSES)))
79
  ax.set_xticklabels(CLASSES, rotation=45, ha='right')
 
82
  buf = io.BytesIO()
83
  plt.savefig(buf, format="png")
84
  plt.close(fig)
85
+ html_chart = f'<img src="data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" style="max-width:100%"/>'
 
86
 
87
  informe = f"""
88
  <div style="font-family:sans-serif; max-width:800px; margin:auto">
89
+ <h2>🧪 Diagnóstico por múltiples modelos de IA</h2>
90
+ <table style="width:100%; font-size:16px; border-collapse:collapse">
91
+ <tr><th>Modelo</th><th>Resultado</th><th>Confianza</th></tr>
92
+ <tr><td>🧠 ViT base</td><td><b>{class_vit}</b></td><td>{conf_vit:.1%}</td></tr>
93
+ <tr><td>🧬 Fast.ai (tipo)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr>
94
+ <tr><td>⚠️ Fast.ai (malignidad)</td><td><b>{'Maligno' if prob_malign > 0.5 else 'Benigno'}</b></td><td>{prob_malign:.1%}</td></tr>
95
+ <tr><td>🌟 ViT fined‑tuned (HAM10000)</td><td><b>{mal_tf} ({class_tf_model})</b></td><td>{conf_tf:.1%}</td></tr>
96
+ </table><br>
97
+ <b>🩺 Recomendación automática:</b><br>
 
98
  """
99
+ risk = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7))
100
+ if prob_malign > 0.7 or risk > 0.6:
 
101
  informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica"
102
+ elif prob_malign > 0.4 or risk > 0.4:
103
  informe += "⚠️ <b>ALTO RIESGO</b> – Consulta con dermatólogo en 7 días"
104
+ elif risk > 0.2:
105
+ informe += "📋 <b>RIESGO MODERADO</b> – Evaluación programada en 2-4 semanas"
106
  else:
107
  informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)"
108
+ informe += "</div>"""
109
 
 
110
  return informe, html_chart
111
 
 
112
  demo = gr.Interface(
113
  fn=analizar_lesion_combined,
114
+ inputs=gr.Image(type="pil"),
115
+ outputs=[gr.HTML(label="Informe"), gr.HTML(label="Gráfico ViT base")],
116
+ title="Detector de Lesiones Cutáneas (ViT + Fast.ai)",
 
 
117
  )
 
118
  if __name__ == "__main__":
119
  demo.launch()
120
+