CancerSkinTest3 / app.py
LoloSemper's picture
Update app.py
e44c49f verified
raw
history blame
5.8 kB
import torch
from transformers import ViTImageProcessor, ViTForImageClassification
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
from fastai.learner import load_learner
from fastai.vision.core import PILImage
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import gradio as gr
import io
import base64
import os
import zipfile
# --- Cargar modelo ViT ---
MODEL_NAME = "ahishamm/vit-base-HAM-10000-sharpened-patch-32"
feature_extractor = ViTImageProcessor.from_pretrained(MODEL_NAME)
model_vit = ViTForImageClassification.from_pretrained(MODEL_NAME)
model_vit.eval()
# --- Cargar modelos Fast.ai ---
model_malignancy = load_learner("ada_learn_malben.pkl")
model_norm2000 = load_learner("ada_learn_skin_norm2000.pkl")
# --- Cargar modelo EfficientNetB3 desde Hugging Face ---
model_effnet = AutoModelForImageClassification.from_pretrained("syaha/skin_cancer_detection_model")
extractor_effnet = AutoFeatureExtractor.from_pretrained("syaha/skin_cancer_detection_model")
model_effnet.eval()
CLASSES = [
"Queratosis actínica / Bowen", "Carcinoma células basales",
"Lesión queratósica benigna", "Dermatofibroma",
"Melanoma maligno", "Nevus melanocítico", "Lesión vascular"
]
RISK_LEVELS = {
0: {'level': 'Moderado', 'color': '#ffaa00', 'weight': 0.6},
1: {'level': 'Alto', 'color': '#ff4444', 'weight': 0.8},
2: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
3: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
4: {'level': 'Crítico', 'color': '#cc0000', 'weight': 1.0},
5: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
6: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1}
}
MALIGNANT_INDICES = [0, 1, 4] # clases de riesgo alto/crítico
def analizar_lesion_combined(img):
try:
img_fastai = PILImage.create(img)
inputs = feature_extractor(img, return_tensors="pt")
with torch.no_grad():
outputs = model_vit(**inputs)
probs_vit = outputs.logits.softmax(dim=-1).cpu().numpy()[0]
pred_idx_vit = int(np.argmax(probs_vit))
pred_class_vit = CLASSES[pred_idx_vit]
confidence_vit = probs_vit[pred_idx_vit]
except Exception as e:
pred_class_vit = "Error"
confidence_vit = 0.0
probs_vit = np.zeros(len(CLASSES))
try:
pred_fast_malignant, _, probs_fast_mal = model_malignancy.predict(img_fastai)
prob_malignant = float(probs_fast_mal[1])
except:
prob_malignant = 0.0
try:
pred_fast_type, _, _ = model_norm2000.predict(img_fastai)
except:
pred_fast_type = "Error"
try:
inputs_eff = extractor_effnet(images=img, return_tensors="pt")
with torch.no_grad():
outputs_eff = model_effnet(**inputs_eff)
probs_eff = outputs_eff.logits.softmax(dim=-1).cpu().numpy()[0]
pred_idx_eff = int(np.argmax(probs_eff))
confidence_eff = probs_eff[pred_idx_eff]
pred_class_eff = model_effnet.config.id2label[str(pred_idx_eff)]
except Exception as e:
pred_class_eff = "Error"
confidence_eff = 0.0
colors_bars = [RISK_LEVELS[i]['color'] for i in range(7)]
fig, ax = plt.subplots(figsize=(8, 3))
ax.bar(CLASSES, probs_vit*100, color=colors_bars)
ax.set_title("Probabilidad ViT por tipo de lesión")
ax.set_ylabel("Probabilidad (%)")
ax.set_xticks(np.arange(len(CLASSES)))
ax.set_xticklabels(CLASSES, rotation=45, ha='right')
ax.grid(axis='y', alpha=0.2)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format="png")
plt.close(fig)
img_b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
html_chart = f'<img src="data:image/png;base64,{img_b64}" style="max-width:100%"/>'
informe = f"""
<div style="font-family:sans-serif; max-width:800px; margin:auto">
<h2>🧪 Diagnóstico por 4 modelos de IA</h2>
<table style="border-collapse: collapse; width:100%; font-size:16px">
<tr><th style="text-align:left">🔍 Modelo</th><th>Resultado</th><th>Confianza</th></tr>
<tr><td>🧠 ViT (transformer)</td><td><b>{pred_class_vit}</b></td><td>{confidence_vit:.1%}</td></tr>
<tr><td>🧬 Fast.ai (clasificación)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr>
<tr><td>⚠️ Fast.ai (malignidad)</td><td><b>{"Maligno" if prob_malignant > 0.5 else "Benigno"}</b></td><td>{prob_malignant:.1%}</td></tr>
<tr><td>🔬 EfficientNetB3 (HAM10000)</td><td><b>{pred_class_eff}</b></td><td>{confidence_eff:.1%}</td></tr>
</table>
<br>
<b>🧪 Recomendación automática:</b><br>
"""
cancer_risk_score = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7))
if prob_malignant > 0.7 or cancer_risk_score > 0.6:
informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica"
elif prob_malignant > 0.4 or cancer_risk_score > 0.4:
informe += "⚠️ <b>ALTO RIESGO</b> – Consulta con dermatólogo en 7 días"
elif cancer_risk_score > 0.2:
informe += "📋 <b>RIESGO MODERADO</b> – Evaluación programada (2-4 semanas)"
else:
informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)"
informe += "</div>"
return informe, html_chart
# Interfaz Gradio
demo = gr.Interface(
fn=analizar_lesion_combined,
inputs=gr.Image(type="pil", label="Sube una imagen de la lesión"),
outputs=[gr.HTML(label="Informe combinado"), gr.HTML(label="Gráfico ViT")],
title="Detector de Lesiones Cutáneas (ViT + Fast.ai + EfficientNetB3)",
description="Comparación entre ViT transformer (HAM10000), dos modelos Fast.ai y un modelo EfficientNetB3.",
flagging_mode="never"
)
if __name__ == "__main__":
demo.launch()