Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
import random | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
from torch.utils.data import Dataset, DataLoader | |
from sklearn.model_selection import train_test_split | |
import torch.nn as nn | |
import torch.optim as optim | |
from sklearn.metrics import f1_score | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def set_seed(seed_value=30): | |
"""Set seed for reproducibility.""" | |
random.seed(seed_value) # Python random module | |
np.random.seed(seed_value) # Numpy module | |
torch.manual_seed(seed_value) # Torch | |
torch.cuda.manual_seed_all(seed_value) # if you are using multi-GPU. | |
torch.backends.cudnn.deterministic = True # CUDNN determinism | |
torch.backends.cudnn.benchmark = False | |
# Example usage | |
set_seed(30) | |
# Load your dataset | |
data_path = 'final_dataset.csv' # Update this path to where your data is stored in Colab | |
data = pd.read_csv(data_path) | |
# Set up the device for GPU usage | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load the model and tokenizer | |
tokenizer = T5Tokenizer.from_pretrained('t5-small') | |
model = T5ForConditionalGeneration.from_pretrained('t5-small') | |
model.to(device) | |
model.eval() | |
# Function to generate summaries | |
def generate_summaries(texts, model, tokenizer, device, max_length=150): | |
summaries = [] | |
for text in texts: | |
encoded_text = tokenizer.encode("summarize: " + text, return_tensors='pt', max_length=512, truncation=True).to(device) | |
summary_ids = model.generate(encoded_text, max_length=max_length, num_beams=4, early_stopping=True) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
summaries.append(summary) | |
return summaries | |
# Split the data into chunks to manage memory more effectively (if needed) | |
chunk_size = 10 # Adjust chunk size based on your dataset size and memory constraints | |
num_chunks = len(data) // chunk_size + (1 if len(data) % chunk_size != 0 else 0) | |
all_summaries = [] | |
for i in range(num_chunks): | |
batch = data['Content'][i * chunk_size:(i + 1) * chunk_size] | |
batch_summaries = generate_summaries(batch, model, tokenizer, device) | |
all_summaries.extend(batch_summaries) | |
# Add summaries to the DataFrame | |
data['Summary'] = all_summaries | |
# Save the DataFrame with summaries to a new CSV file | |
output_path = '/content/summarized_data.csv' | |
data.to_csv(output_path, index=False) | |
print(f"Data with summaries saved to {output_path}") | |
class PolicyDataset(Dataset): | |
def __init__(self, data, tokenizer, max_input_length=512, max_target_length=128): | |
self.data = data | |
self.tokenizer = tokenizer | |
self.max_input_length = max_input_length | |
self.max_target_length = max_target_length | |
def __len__(self): | |
return len(self.data) | |
def __getitem__(self, idx): | |
policy_text = self.data.iloc[idx]['Content'] | |
summary_text = self.data.iloc[idx]['Summary'] | |
input_encoding = self.tokenizer.encode_plus( | |
policy_text, | |
max_length=self.max_input_length, | |
padding='max_length', | |
truncation=True, | |
return_tensors='pt' | |
) | |
target_encoding = self.tokenizer.encode_plus( | |
summary_text, | |
max_length=self.max_target_length, | |
padding='max_length', | |
truncation=True, | |
return_tensors='pt' | |
) | |
return { | |
'input_ids': input_encoding['input_ids'].squeeze(), | |
'attention_mask': input_encoding['attention_mask'].squeeze(), | |
'labels': target_encoding['input_ids'].squeeze(), | |
'labels_mask': target_encoding['attention_mask'].squeeze() | |
} | |
data = pd.read_csv('summarized_data.csv') # Ensure this points to your CSV file | |
tokenizer = T5Tokenizer.from_pretrained('t5-small') | |
model = T5ForConditionalGeneration.from_pretrained('t5-small').to(device) | |
# Prepare data splits and loaders | |
train_data, eval_data = train_test_split(data, test_size=0.1, random_state=42) | |
train_dataset = PolicyDataset(train_data, tokenizer) | |
eval_dataset = PolicyDataset(eval_data, tokenizer) | |
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True) | |
eval_loader = DataLoader(eval_dataset, batch_size=16, shuffle=False) | |
def train(model, train_loader, optimizer, criterion, device): | |
model.train() | |
total_loss = 0 | |
for batch in train_loader: | |
optimizer.zero_grad() | |
input_ids = batch['input_ids'].to(device) | |
attention_mask = batch['attention_mask'].to(device) | |
labels = batch['labels'].to(device) # Labels should be of the shape [batch_size, seq_length] | |
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) | |
logits = outputs.logits # Output logits are typically [batch_size, seq_length, vocab_size] | |
# Reshape labels to match the output logits dimensions if needed | |
# labels should be [batch_size * seq_length] when passed to CrossEntropyLoss | |
loss = criterion(logits.view(-1, logits.size(-1)), labels.view(-1)) | |
loss.backward() | |
optimizer.step() | |
total_loss += loss.item() | |
return total_loss / len(train_loader) | |
def evaluate(model, eval_loader, criterion, device): | |
model.eval() | |
total_loss = 0 | |
all_predictions = [] | |
all_labels = [] | |
with torch.no_grad(): | |
for batch in eval_loader: | |
input_ids = batch['input_ids'].to(device) | |
attention_mask = batch['attention_mask'].to(device) | |
labels = batch['labels'].to(device) | |
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) | |
logits = outputs.logits | |
# Calculate loss | |
loss = criterion(logits.view(-1, logits.size(-1)), labels.view(-1)) | |
total_loss += loss.item() | |
# Calculate F1 score | |
predictions = torch.argmax(logits, dim=-1).flatten().cpu().numpy() | |
labels_flat = labels.flatten().cpu().numpy() | |
valid_indices = labels_flat != -100 | |
valid_predictions = predictions[valid_indices] | |
valid_labels = labels_flat[valid_indices] | |
all_predictions.extend(valid_predictions) | |
all_labels.extend(valid_labels) | |
f1 = f1_score(all_labels, all_predictions, average='macro') | |
return total_loss / len(eval_loader), f1 | |
optimizer = optim.AdamW(model.parameters(), lr=5e-5) | |
criterion = nn.CrossEntropyLoss() | |
# Training loop | |
for epoch in range(5): # Adjust the number of epochs as needed | |
train_loss = train(model, train_loader, optimizer, criterion, device) | |
eval_loss, eval_f1 = evaluate(model, eval_loader, criterion, device) | |
print(f"Epoch {epoch + 1}: Train Loss = {train_loss:.4f}, Eval Loss = {eval_loss:.4f}, Eval F1 = {eval_f1:.4f}") | |
# Function to run training | |
def run_training(lr, batch_size, number_of_epochs=5): | |
model = T5ForConditionalGeneration.from_pretrained('t5-small').to(device) | |
model.train() | |
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) | |
optimizer = optim.AdamW(model.parameters(), lr=lr) | |
criterion = torch.nn.CrossEntropyLoss() | |
# Training loop | |
for epoch in range(number_of_epochs): | |
train_loss = train(model, train_loader, optimizer, criterion, device) | |
eval_loss, eval_f1 = evaluate(model, eval_loader, criterion, device) | |
print(f"LR: {lr}, Batch size: {batch_size}, Epoch: {epoch+1}, Train Loss: {train_loss:.4f}, Eval Loss: {eval_loss:.4f}, Eval F1: {eval_f1:.4f}") | |
# Define hyperparameters to test | |
learning_rates = [1e-5, 3e-5, 5e-5] | |
batch_sizes = [16, 32, 64] | |
# Run grid search | |
for lr in learning_rates: | |
for batch_size in batch_sizes: | |
run_training(lr, batch_size, number_of_epochs=5) # Specify the number of epochs here | |