Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,13 +4,12 @@ from langdetect import detect
|
|
| 4 |
from sentence_transformers import SentenceTransformer
|
| 5 |
import numpy as np
|
| 6 |
import re
|
|
|
|
| 7 |
|
| 8 |
# Загрузка и предварительная обработка текстовых файлов
|
| 9 |
def load_and_preprocess_files():
|
| 10 |
files = {
|
| 11 |
-
"vampires": "vampires.txt"
|
| 12 |
-
"werewolves": "werewolves.txt",
|
| 13 |
-
"humans": "humans.txt"
|
| 14 |
}
|
| 15 |
|
| 16 |
knowledge_base = {}
|
|
@@ -31,9 +30,8 @@ def load_and_preprocess_files():
|
|
| 31 |
def initialize_search_model():
|
| 32 |
return SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
| 33 |
|
| 34 |
-
# Поиск релевантной информации
|
| 35 |
def find_relevant_info(question, knowledge_base, model, top_k=3):
|
| 36 |
-
# Собираем все текстовые фрагменты с их категориями
|
| 37 |
all_fragments = []
|
| 38 |
for category, paragraphs in knowledge_base.items():
|
| 39 |
for para in paragraphs:
|
|
@@ -42,12 +40,10 @@ def find_relevant_info(question, knowledge_base, model, top_k=3):
|
|
| 42 |
if not all_fragments:
|
| 43 |
return []
|
| 44 |
|
| 45 |
-
# Эмбеддинги для всех фрагментов
|
| 46 |
texts = [f[0] for f in all_fragments]
|
| 47 |
embeddings = model.encode(texts)
|
| 48 |
question_embedding = model.encode([question])
|
| 49 |
|
| 50 |
-
# Вычисляем сходство и выбираем топ фрагментов
|
| 51 |
similarities = np.dot(embeddings, question_embedding.T).flatten()
|
| 52 |
top_indices = similarities.argsort()[-top_k:][::-1]
|
| 53 |
|
|
@@ -58,7 +54,6 @@ def generate_natural_response(question, relevant_info):
|
|
| 58 |
if not relevant_info:
|
| 59 |
return "Извините, не нашел информации по вашему вопросу. Попробуйте переформулировать."
|
| 60 |
|
| 61 |
-
# Определяем тему вопроса
|
| 62 |
question_type = "о них"
|
| 63 |
if "вампир" in question.lower():
|
| 64 |
question_type = "о вампирах"
|
|
@@ -67,7 +62,6 @@ def generate_natural_response(question, relevant_info):
|
|
| 67 |
elif "человек" in question.lower() or "люди" in question.lower():
|
| 68 |
question_type = "о людях"
|
| 69 |
|
| 70 |
-
# Собираем уникальную информацию
|
| 71 |
unique_info = []
|
| 72 |
seen = set()
|
| 73 |
for para, category in relevant_info:
|
|
@@ -75,21 +69,17 @@ def generate_natural_response(question, relevant_info):
|
|
| 75 |
unique_info.append((para, category))
|
| 76 |
seen.add(para)
|
| 77 |
|
| 78 |
-
# Формируем ответ
|
| 79 |
response = f"Вот что мне известно {question_type}:\n\n"
|
| 80 |
|
| 81 |
for i, (para, category) in enumerate(unique_info, 1):
|
| 82 |
-
# Упрощаем маркированные списки
|
| 83 |
if para.startswith("- "):
|
| 84 |
para = para.replace("\n- ", "\n• ").replace("- ", "• ")
|
| 85 |
|
| 86 |
-
# Добавляем источник только если есть несколько категорий
|
| 87 |
if len(set(c for _, c in unique_info)) > 1:
|
| 88 |
response += f"{i}. ({category.capitalize()}) {para}\n\n"
|
| 89 |
else:
|
| 90 |
response += f"{i}. {para}\n\n"
|
| 91 |
|
| 92 |
-
# Добавляем естественное завершение
|
| 93 |
endings = [
|
| 94 |
"Надеюсь, эта информация была полезной!",
|
| 95 |
"Если хотите узнать больше деталей, уточните вопрос.",
|
|
@@ -97,71 +87,59 @@ def generate_natural_response(question, relevant_info):
|
|
| 97 |
"Это основные сведения, которые у меня есть."
|
| 98 |
]
|
| 99 |
|
| 100 |
-
response +=
|
| 101 |
|
| 102 |
return response
|
| 103 |
|
| 104 |
-
# Обработка вопроса
|
| 105 |
def process_question(question, history):
|
| 106 |
-
# Проверка языка
|
| 107 |
try:
|
| 108 |
if detect(question) != 'ru':
|
| 109 |
return "Пожалуйста, задавайте вопросы на русском языке.", history
|
| 110 |
except:
|
| 111 |
pass
|
| 112 |
|
| 113 |
-
# Ленивая загрузка данных и модели
|
| 114 |
if not hasattr(process_question, 'knowledge_base'):
|
| 115 |
process_question.knowledge_base = load_and_preprocess_files()
|
| 116 |
|
| 117 |
if not hasattr(process_question, 'search_model'):
|
| 118 |
process_question.search_model = initialize_search_model()
|
| 119 |
|
| 120 |
-
# Поиск релевантной информации
|
| 121 |
relevant_info = find_relevant_info(question, process_question.knowledge_base, process_question.search_model)
|
| 122 |
-
|
| 123 |
-
# Генерация ответа
|
| 124 |
answer = generate_natural_response(question, relevant_info)
|
| 125 |
-
|
| 126 |
-
# Обновление истории
|
| 127 |
history.append((question, answer))
|
| 128 |
-
|
| 129 |
return "", history
|
| 130 |
|
| 131 |
-
# Создание интерфейса
|
| 132 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 133 |
gr.Markdown("""<h1 style='text-align: center'>🧛♂️ Мир сверхъестественного 🐺</h1>""")
|
| 134 |
gr.Markdown("""<div style='text-align: center'>Задавайте вопросы о вампирах, оборотнях и людях на русском языке</div>""")
|
| 135 |
|
| 136 |
-
|
| 137 |
-
with gr.Column(scale=2):
|
| 138 |
-
chatbot = gr.Chatbot(
|
| 139 |
-
label="Диалог",
|
| 140 |
-
bubble_full_width=False,
|
| 141 |
-
avatar_images=(
|
| 142 |
-
"https://i.imgur.com/7WqjWaz.png", # User avatar
|
| 143 |
-
"https://i.imgur.com/7uQWsZg.png" # Bot avatar
|
| 144 |
-
),
|
| 145 |
-
height=500
|
| 146 |
-
)
|
| 147 |
-
with gr.Column(scale=1):
|
| 148 |
-
gr.Markdown("**Примеры вопросов:**")
|
| 149 |
-
gr.Examples(
|
| 150 |
-
examples=[
|
| 151 |
-
"Какие слабости у вампиров?",
|
| 152 |
-
"Как защититься от оборотней?",
|
| 153 |
-
"Чем люди отличаются от других существ?",
|
| 154 |
-
"Расскажи подробнее о вампирах"
|
| 155 |
-
],
|
| 156 |
-
inputs=[msg]
|
| 157 |
-
)
|
| 158 |
-
|
| 159 |
msg = gr.Textbox(
|
| 160 |
label="Ваш вопрос",
|
| 161 |
placeholder="Введите вопрос и нажмите Enter...",
|
| 162 |
container=False
|
| 163 |
)
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
with gr.Row():
|
| 166 |
submit = gr.Button("Отправить", variant="primary")
|
| 167 |
clear = gr.Button("Очистить историю")
|
|
@@ -170,5 +148,4 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 170 |
msg.submit(process_question, [msg, chatbot], [msg, chatbot])
|
| 171 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 172 |
|
| 173 |
-
|
| 174 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 4 |
from sentence_transformers import SentenceTransformer
|
| 5 |
import numpy as np
|
| 6 |
import re
|
| 7 |
+
import random
|
| 8 |
|
| 9 |
# Загрузка и предварительная обработка текстовых файлов
|
| 10 |
def load_and_preprocess_files():
|
| 11 |
files = {
|
| 12 |
+
"vampires": "vampires.txt"
|
|
|
|
|
|
|
| 13 |
}
|
| 14 |
|
| 15 |
knowledge_base = {}
|
|
|
|
| 30 |
def initialize_search_model():
|
| 31 |
return SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
| 32 |
|
| 33 |
+
# Поиск релевантной информации
|
| 34 |
def find_relevant_info(question, knowledge_base, model, top_k=3):
|
|
|
|
| 35 |
all_fragments = []
|
| 36 |
for category, paragraphs in knowledge_base.items():
|
| 37 |
for para in paragraphs:
|
|
|
|
| 40 |
if not all_fragments:
|
| 41 |
return []
|
| 42 |
|
|
|
|
| 43 |
texts = [f[0] for f in all_fragments]
|
| 44 |
embeddings = model.encode(texts)
|
| 45 |
question_embedding = model.encode([question])
|
| 46 |
|
|
|
|
| 47 |
similarities = np.dot(embeddings, question_embedding.T).flatten()
|
| 48 |
top_indices = similarities.argsort()[-top_k:][::-1]
|
| 49 |
|
|
|
|
| 54 |
if not relevant_info:
|
| 55 |
return "Извините, не нашел информации по вашему вопросу. Попробуйте переформулировать."
|
| 56 |
|
|
|
|
| 57 |
question_type = "о них"
|
| 58 |
if "вампир" in question.lower():
|
| 59 |
question_type = "о вампирах"
|
|
|
|
| 62 |
elif "человек" in question.lower() or "люди" in question.lower():
|
| 63 |
question_type = "о людях"
|
| 64 |
|
|
|
|
| 65 |
unique_info = []
|
| 66 |
seen = set()
|
| 67 |
for para, category in relevant_info:
|
|
|
|
| 69 |
unique_info.append((para, category))
|
| 70 |
seen.add(para)
|
| 71 |
|
|
|
|
| 72 |
response = f"Вот что мне известно {question_type}:\n\n"
|
| 73 |
|
| 74 |
for i, (para, category) in enumerate(unique_info, 1):
|
|
|
|
| 75 |
if para.startswith("- "):
|
| 76 |
para = para.replace("\n- ", "\n• ").replace("- ", "• ")
|
| 77 |
|
|
|
|
| 78 |
if len(set(c for _, c in unique_info)) > 1:
|
| 79 |
response += f"{i}. ({category.capitalize()}) {para}\n\n"
|
| 80 |
else:
|
| 81 |
response += f"{i}. {para}\n\n"
|
| 82 |
|
|
|
|
| 83 |
endings = [
|
| 84 |
"Надеюсь, эта информация была полезной!",
|
| 85 |
"Если хотите узнать больше деталей, уточните вопрос.",
|
|
|
|
| 87 |
"Это основные сведения, которые у меня есть."
|
| 88 |
]
|
| 89 |
|
| 90 |
+
response += random.choice(endings)
|
| 91 |
|
| 92 |
return response
|
| 93 |
|
| 94 |
+
# Обработка вопроса
|
| 95 |
def process_question(question, history):
|
|
|
|
| 96 |
try:
|
| 97 |
if detect(question) != 'ru':
|
| 98 |
return "Пожалуйста, задавайте вопросы на русском языке.", history
|
| 99 |
except:
|
| 100 |
pass
|
| 101 |
|
|
|
|
| 102 |
if not hasattr(process_question, 'knowledge_base'):
|
| 103 |
process_question.knowledge_base = load_and_preprocess_files()
|
| 104 |
|
| 105 |
if not hasattr(process_question, 'search_model'):
|
| 106 |
process_question.search_model = initialize_search_model()
|
| 107 |
|
|
|
|
| 108 |
relevant_info = find_relevant_info(question, process_question.knowledge_base, process_question.search_model)
|
|
|
|
|
|
|
| 109 |
answer = generate_natural_response(question, relevant_info)
|
|
|
|
|
|
|
| 110 |
history.append((question, answer))
|
|
|
|
| 111 |
return "", history
|
| 112 |
|
| 113 |
+
# Создание интерфейса
|
| 114 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 115 |
gr.Markdown("""<h1 style='text-align: center'>🧛♂️ Мир сверхъестественного 🐺</h1>""")
|
| 116 |
gr.Markdown("""<div style='text-align: center'>Задавайте вопросы о вампирах, оборотнях и людях на русском языке</div>""")
|
| 117 |
|
| 118 |
+
# Сначала определяем элементы ввода
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
msg = gr.Textbox(
|
| 120 |
label="Ваш вопрос",
|
| 121 |
placeholder="Введите вопрос и нажмите Enter...",
|
| 122 |
container=False
|
| 123 |
)
|
| 124 |
|
| 125 |
+
# Затем определяем примеры, которые используют msg
|
| 126 |
+
examples = gr.Examples(
|
| 127 |
+
examples=[
|
| 128 |
+
"Какие слабости у вампиров?",
|
| 129 |
+
"Как защититься от оборотней?",
|
| 130 |
+
"Чем люди отличаются от других существ?",
|
| 131 |
+
"Расскажи подробнее о вампирах"
|
| 132 |
+
],
|
| 133 |
+
inputs=[msg],
|
| 134 |
+
label="Примеры вопросов:"
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
# Затем определяем чат
|
| 138 |
+
chatbot = gr.Chatbot(
|
| 139 |
+
label="Диалог",
|
| 140 |
+
height=500
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
with gr.Row():
|
| 144 |
submit = gr.Button("Отправить", variant="primary")
|
| 145 |
clear = gr.Button("Очистить историю")
|
|
|
|
| 148 |
msg.submit(process_question, [msg, chatbot], [msg, chatbot])
|
| 149 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 150 |
|
| 151 |
+
demo.launch()
|
|
|