Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,837 Bytes
dc13b6d f358820 dc13b6d da40aec dc13b6d 8722708 dc13b6d da40aec 7e8e5b2 da40aec 8722708 f358820 91852e0 dc13b6d 91852e0 f4fd3fb dc13b6d da40aec 7e8e5b2 60c960b da40aec dc13b6d 91852e0 0fd90d3 f4fd3fb 7e8e5b2 dc13b6d f4fd3fb dc13b6d da40aec dc13b6d 0fd90d3 dc13b6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
# app.py
import spaces
import gradio as gr
from gradio import update
from functools import lru_cache
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# 可選模型列表
MODEL_LIST = [
"ckiplab/gpt2-tiny-chinese",
"ckiplab/gpt2-base-chinese",
"liswei/Taiwan-ELM-270M-Instruct",
"liswei/Taiwan-ELM-1_1B",
"google/gemma-3-1b-pt",
"benchang1110/Qwen2.5-Taiwan-1.5B-Instruct",
"benchang1110/Taiwan-tinyllama-v1.0-base",
]
@lru_cache(maxsize=None)
def get_pipeline(model_name):
tok = AutoTokenizer.from_pretrained(model_name)
mdl = AutoModelForCausalLM.from_pretrained(model_name, weights_only=False)
mdl.to("cuda")
return pipeline("text-generation", model=mdl, tokenizer=tok, device=0)
@spaces.GPU
def suggest_next(text, model_name, k, m):
"""
使用 Beam Search 產生 M 條最可能的下段建議,並一次更新可選項清單。
"""
gen_pipe = get_pipeline(model_name)
outs = gen_pipe(
text,
max_new_tokens=k,
num_beams=m,
num_return_sequences=m,
do_sample=False,
early_stopping=True
)
suggestions = [out["generated_text"][len(text):] for out in outs]
# 使用 None 重置選值,避免預設 value 不在 choices 列表中
return update(choices=suggestions, value=None)
def append_suggestion(current, choice):
# 如果沒有選擇,直接返回原文字
if choice is None:
return current
return current + choice
with gr.Blocks() as demo:
gr.Markdown(
"## 🇹🇼 台灣中文下段預測 \n"
"結合小型語言模型與 ZeroGPU,即時 IME 風格建議條。"
)
# 建議清單置頂,使用 Radio 類型一次展開
suggestions = gr.Radio(
[], label="建議清單", interactive=True, type="value", elem_id="suggestions-bar"
)
# 輸入區與生成按鈕並排
with gr.Row():
input_text = gr.TextArea(
label="輸入文字", lines=4, placeholder="請在此輸入起始片段…"
)
gpu_button = gr.Button("使用 GPU 生成建議")
# 參數設定區
with gr.Row():
model_selector = gr.Dropdown(
MODEL_LIST, value=MODEL_LIST[0], label="選擇模型"
)
k_slider = gr.Slider(
minimum=1, maximum=50, step=1, value=5, label="K(最大新生成詞元)"
)
m_slider = gr.Slider(
minimum=1, maximum=10, step=1, value=5, label="M(建議數量 / Beam 數)"
)
# 事件綁定
gpu_button.click(
fn=suggest_next,
inputs=[input_text, model_selector, k_slider, m_slider],
outputs=suggestions,
)
suggestions.change(
fn=append_suggestion,
inputs=[input_text, suggestions],
outputs=input_text,
)
demo.launch()
|