File size: 2,101 Bytes
dc13b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8722708
 
 
dc13b6d
 
 
 
 
8722708
 
 
dc13b6d
 
 
 
 
 
8722708
dc13b6d
8722708
dc13b6d
 
8722708
 
 
dc13b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# app.py
import spaces
import gradio as gr
from functools import lru_cache
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

MODEL_LIST = [
    "ckiplab/gpt2-tiny-chinese",
    "ckiplab/gpt2-base-chinese",
    "liswei/Taiwan-ELM-270M-Instruct",
    "liswei/Taiwan-ELM-1_1B",
    "google/gemma-3-1b-pt",
    "benchang1110/Qwen2.5-Taiwan-1.5B-Instruct",
    "benchang1110/Taiwan-tinyllama-v1.0-base",
]

@lru_cache(maxsize=None)
def get_pipeline(model_name):
    tok = AutoTokenizer.from_pretrained(model_name)
    # By setting weights_only=False we bypass the torch.load(weights_only=True)
    # path that is disallowed for torch<2.6 due to CVE-2025-32434 :contentReference[oaicite:1]{index=1}.
    mdl = AutoModelForCausalLM.from_pretrained(model_name, weights_only=False)
    mdl.to("cuda")
    return pipeline("text-generation", model=mdl, tokenizer=tok, device=0)

@spaces.GPU
def suggest_next(text, model_name, k, m):
    outs = get_pipeline(model_name)(
        text, max_new_tokens=k, num_return_sequences=m, do_sample=False
    )
    return [out["generated_text"][len(text):] for out in outs]

def append_suggestion(current, choice):
    return current + choice

with gr.Blocks() as demo:
    gr.Markdown("## 🇹🇼 台灣中文下段預測(ZeroGPU + Gradio v5)")

    input_text = gr.TextArea(label="輸入文字", lines=4, placeholder="請在此輸入起始片段…")

    with gr.Row():
        model_selector = gr.Dropdown(MODEL_LIST, value=MODEL_LIST[0], label="選擇模型")
        k_slider = gr.Slider(1, 50, value=5, label="K(最大新生成詞元)")
        m_slider = gr.Slider(1, 10, value=5, label="M(建議數量)")

    suggestions = gr.Dropdown([], label="建議清單", interactive=True)
    gpu_button = gr.Button("使用 GPU 生成建議")

    gpu_button.click(
        fn=suggest_next,
        inputs=[input_text, model_selector, k_slider, m_slider],
        outputs=suggestions,
    )
    suggestions.change(
        fn=append_suggestion,
        inputs=[input_text, suggestions],
        outputs=input_text,
    )

    demo.launch()