Spaces:
Running
on
Zero
Running
on
Zero
# app.py | |
import spaces | |
import gradio as gr | |
from gradio import update | |
from functools import lru_cache | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from opencc import OpenCC # 用於簡體轉繁體 | |
from math import gcd | |
from termcolor import cprint | |
# 初始化簡體到繁體轉換器 | |
cc = OpenCC('s2t') | |
tokenizer = None | |
# 可選模型列表 | |
MODEL_LIST = [ | |
"liswei/Taiwan-ELM-270M", | |
"Mxode/SmolLM-Chinese-180M", | |
"flyingfishinwater/chinese-baby-llama2", | |
"unsloth/gemma-3-1b-pt", | |
"ckiplab/gpt2-tiny-chinese", | |
"ckiplab/gpt2-base-chinese", | |
"liswei/Taiwan-ELM-1_1B", | |
"benchang1110/Qwen2.5-Taiwan-1.5B-Instruct", | |
"benchang1110/Taiwan-tinyllama-v1.0-base", | |
"lianghsun/Llama-3.2-Taiwan-3B", | |
"twinkle-ai/Llama-3.2-3B-F1-Instruct", | |
"Epiculous/Violet_Twilight-v0.2", | |
] | |
def clean_suggestions(suggestions: list[str], max_levels: int) -> list[str]: | |
""" | |
清洗建议列表: | |
1. 对每条建议用 tokenizer.tokenize 得到 token 序列。 | |
2. 构建前缀树,将所有 token 序列插入。 | |
3. 遍历前缀树,仅在深度 <= max_levels 且该节点有子节点时,提取对应 token 前缀。 | |
4. 将这些 token 前缀转换回文本并去重,返回列表。 | |
""" | |
# 定义 Trie 节点结构 | |
class TrieNode: | |
__slots__ = ("children", "count") | |
def __init__(self): | |
self.children: dict[str, TrieNode] = {} | |
self.count: int = 0 # 可以记录有多少序列经过此节点(可选) | |
# 构建前缀树 | |
root = TrieNode() | |
token_seqs: list[list[str]] = [] | |
for text in suggestions: | |
# tokenizer.tokenize 可能返回子词 token 列表 | |
try: | |
toks = tokenizer.tokenize(text) | |
except Exception: | |
# 如果 tokenizer 不支持直接 tokenize raw text,可以先用 basic tokenization,如按空白分割 | |
toks = text.split() | |
if not toks: | |
continue | |
token_seqs.append(toks) | |
node = root | |
node.count += 1 | |
for tok in toks: | |
if tok not in node.children: | |
node.children[tok] = TrieNode() | |
node = node.children[tok] | |
node.count += 1 | |
# 遍历 Trie,收集深度 <= max_levels 且有子节点的前缀序列 | |
results_prefix_tokens: set[tuple[str, ...]] = set() | |
def dfs(node: TrieNode, path: list[str], depth: int): | |
# node: 当前 TrieNode; path: 已走过的 token 列表; depth: len(path) | |
if depth > max_levels: | |
return | |
# 如果当前节点有子节点,且 depth>0 (排除根节点本身),则为一个候选前缀 | |
if depth > 0 and node.children: | |
results_prefix_tokens.add(tuple(path)) | |
# 继续往下遍历,直到 depth == max_levels | |
if depth == max_levels: | |
return | |
for tok, child in node.children.items(): | |
path.append(tok) | |
dfs(child, path, depth + 1) | |
path.pop() | |
dfs(root, [], 0) | |
# 将 token 前缀转换回字符串 | |
cleaned: set[str] = set() | |
for tok_prefix in results_prefix_tokens: | |
try: | |
# tokenizer.convert_tokens_to_string 在大多数 tokenizer 支持 | |
text_pref = tokenizer.convert_tokens_to_string(list(tok_prefix)).strip() | |
except Exception: | |
# fallback: 直接拼接 token(可能需要根据 tokenizer 规范加空格或直接连起来) | |
text_pref = "".join(tok_prefix).strip() | |
if text_pref: | |
cleaned.add(text_pref) | |
# 返回去重之后的列表 | |
return list(cleaned) | |
def get_pipeline(model_name): | |
global tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
mdl = AutoModelForCausalLM.from_pretrained( | |
model_name, weights_only=False, trust_remote_code=True | |
) | |
try: | |
mdl.to("cuda") | |
except Exception as e: | |
print(f'Error: {e}') | |
return pipeline("text-generation", model=mdl, tokenizer=tokenizer, device=0) | |
def suggest_next(text, model_name, k, m, num_beam_groups, diversity_penalty, max_prefix_levels=2): | |
""" | |
使用 Diverse Beam Search 產生 m 條候選: | |
- num_beams = m | |
- num_beam_groups, diversity_penalty 可調整多樣性 | |
之後轉繁體、去重、合併共同前綴後回傳。 | |
""" | |
gen_pipe = get_pipeline(model_name) | |
# 構造 generate 參數字典,僅在 penalty>0 時加入 diversity 相關 | |
gen_kwargs = { | |
"max_new_tokens": k, | |
"num_beams": m, | |
"num_return_sequences": m, | |
"do_sample": False, | |
"early_stopping": True, | |
} | |
if diversity_penalty and diversity_penalty > 0: | |
valid_group = max(gcd(m, num_beam_groups),2) | |
gen_kwargs["num_beam_groups"] = valid_group | |
gen_kwargs["diversity_penalty"] = float(diversity_penalty) | |
outs = gen_pipe(text, **gen_kwargs) | |
# 提取純下文、過濾空字串、繁體化、確保 strip 處理 | |
suggestions = set() | |
for out in outs: | |
snippet = out["generated_text"][len(text):].strip() | |
if not snippet: | |
continue | |
converted = cc.convert(snippet).strip() | |
suggestions.add(converted) | |
suggestions = list(suggestions) | |
suggestions = clean_suggestions(suggestions, max_prefix_levels) | |
return update(choices=suggestions, value=None) | |
def append_suggestion(current, choice): | |
if choice is None: | |
return current | |
# 直接插入選中的候選文字 | |
return current + choice | |
# 自訂 CSS:模擬經典中文輸入法候選欄樣式,並優化手機響應與自動高度 | |
custom_css = """ | |
#suggestions-bar { | |
width: 100%; | |
margin-bottom: 8px; | |
} | |
#suggestions-bar .candidate-list { | |
display: flex; | |
gap: 8px; | |
background: #fff; | |
border: 1px solid #999; | |
border-radius: 4px; | |
padding: 6px; | |
overflow-x: auto; | |
white-space: nowrap; | |
} | |
#suggestions-bar .candidate-list label { | |
cursor: pointer; | |
padding: 6px 10px; | |
font-size: 16px; | |
} | |
#suggestions-bar .candidate-list label:hover { | |
background: #f5f5f5; | |
} | |
#suggestions-bar .candidate-list input[type=radio]:checked + label { | |
background: #e6f7ff; | |
border: 1px solid #1890ff; | |
} | |
#input-box textarea { | |
width: 100%; | |
font-size: 16px; | |
padding: 6px; | |
box-sizing: border-box; | |
overflow: hidden; | |
resize: none; | |
} | |
#predict-button { | |
margin-top: 8px; | |
width: 100%; | |
} | |
/* 手機響應式 */ | |
@media only screen and (max-width: 600px) { | |
#suggestions-bar .candidate-list label { | |
padding: 8px; | |
font-size: 18px; | |
} | |
#predict-button { | |
font-size: 18px; | |
} | |
} | |
""" | |
# 自動增高腳本 | |
auto_height_js = """ | |
<script> | |
window.addEventListener('load', () => { | |
const textarea = document.querySelector('#input-box textarea'); | |
if (!textarea) return; | |
textarea.style.height = 'auto'; | |
textarea.addEventListener('input', function() { | |
this.style.height = 'auto'; | |
this.style.height = this.scrollHeight + 'px'; | |
}); | |
}); | |
</script> | |
""" | |
with gr.Blocks(css=custom_css) as demo: | |
gr.HTML(auto_height_js) | |
gr.Markdown( | |
"## 🇹🇼 繁體中文 IME 加速器 \ | |
" | |
"結合小型語言模型與 ZeroGPU,提供即時輸入法風格候選欄。" | |
) | |
with gr.Column(): | |
suggestions = gr.Radio( | |
[], label="", interactive=True, type="value", | |
elem_id="suggestions-bar", elem_classes="candidate-list" | |
) | |
input_text = gr.Textbox( | |
label="", placeholder="請輸入拼音或文字…", | |
lines=1, max_lines=20, elem_id="input-box" | |
) | |
# 永遠顯示預測按鈕 | |
with gr.Row(): | |
auto_predict = gr.Checkbox( | |
value=True, label="自動預測(內容變更時觸發)", elem_id="auto-predict" | |
) | |
predict_button = gr.Button( | |
"預測", elem_id="predict-button" | |
) | |
with gr.Accordion("進階設定", open=False): | |
model_selector = gr.Dropdown( | |
MODEL_LIST, value=MODEL_LIST[0], label="模型" | |
) | |
k_slider = gr.Slider( | |
minimum=1, maximum=50, step=1, value=10, label="K(最大新詞元數)" | |
) | |
m_slider = gr.Slider( | |
minimum=1, maximum=30, step=1, value=20, label="M(建議數/Beam 數)" | |
) | |
group_slider = gr.Slider( | |
minimum=1, maximum=30, step=1, value=6, | |
label="Beam 群組數 (num_beam_groups)" | |
) | |
diversity_penalty_slider = gr.Slider( | |
minimum=0.0, maximum=2.0, step=0.1, value=1.0, | |
label="多樣性懲罰 (diversity_penalty)" | |
) | |
prefix_levels_slider = gr.Slider( | |
minimum=1, maximum=5, step=1, value=2, | |
label="Clean 前綴深度 (max_levels)" | |
) | |
# 綁定事件 | |
predict_button.click( | |
fn=suggest_next, | |
inputs=[ | |
input_text, | |
model_selector, | |
k_slider, | |
m_slider, | |
group_slider, | |
diversity_penalty_slider, | |
prefix_levels_slider # 新增 | |
], | |
outputs=suggestions, | |
) | |
input_text.change( | |
fn=lambda txt, mdl, k, m, g, d, auto, pl: ( | |
suggest_next(txt, mdl, k, m, g, d, pl) | |
if auto else update(choices=[], value=None) | |
), | |
inputs=[ | |
input_text, | |
model_selector, | |
k_slider, | |
m_slider, | |
group_slider, | |
diversity_penalty_slider, | |
auto_predict, | |
prefix_levels_slider # 新增 | |
], | |
outputs=suggestions, | |
) | |
suggestions.change( | |
fn=append_suggestion, | |
inputs=[input_text, suggestions], | |
outputs=input_text, | |
) | |
demo.launch() |