Luigi's picture
add spk diarization to sensevoice transscript
38f97a7
raw
history blame
9.58 kB
import os
import re
import tempfile
import torch
import gradio as gr
from transformers import pipeline
from pydub import AudioSegment
from pyannote.audio import Pipeline as DiarizationPipeline
import spaces # zeroGPU support
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
# —————— Model Lists ——————
WHISPER_MODELS = [
"openai/whisper-large-v3-turbo",
"openai/whisper-large-v3",
"openai/whisper-tiny",
"openai/whisper-small",
"openai/whisper-medium",
"openai/whisper-base",
"JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW",
"Jingmiao/whisper-small-zh_tw",
"DDTChen/whisper-medium-zh-tw",
"kimbochen/whisper-small-zh-tw",
"JacobLinCool/whisper-large-v3-turbo-zh-TW-clean-1",
"JunWorks/whisper-small-zhTW",
"WANGTINGTING/whisper-large-v2-zh-TW-vol2",
"xmzhu/whisper-tiny-zh-TW",
"ingrenn/whisper-small-common-voice-13-zh-TW",
"jun-han/whisper-small-zh-TW",
"xmzhu/whisper-tiny-zh-TW-baseline",
"JacobLinCool/whisper-large-v3-turbo-common_voice_16_1-zh-TW-2",
"JacobLinCool/whisper-large-v3-common_voice_19_0-zh-TW-full-1",
"momo103197/whisper-small-zh-TW-mix",
"JacobLinCool/whisper-large-v3-turbo-zh-TW-clean-1-merged",
"JacobLinCool/whisper-large-v2-common_voice_19_0-zh-TW-full-1",
"kimas1269/whisper-meduim_zhtw",
"JunWorks/whisper-base-zhTW",
"JunWorks/whisper-small-zhTW-frozenDecoder",
"sandy1990418/whisper-large-v3-turbo-zh-tw",
"JacobLinCool/whisper-large-v3-turbo-common_voice_16_1-zh-TW-pissa-merged",
"momo103197/whisper-small-zh-TW-16",
"k1nto/Belle-whisper-large-v3-zh-punct-ct2"
]
SENSEVOICE_MODELS = [
"FunAudioLLM/SenseVoiceSmall",
"AXERA-TECH/SenseVoice",
"alextomcat/SenseVoiceSmall",
"ChenChenyu/SenseVoiceSmall-finetuned",
"apinge/sensevoice-small",
]
# —————— Language Options ——————
WHISPER_LANGUAGES = [
"auto", "af","am","ar","as","az","ba","be","bg","bn","bo","br","bs","ca",
"cs","cy","da","de","el","en","es","et","eu","fa","fi","fo","fr",
"gl","gu","ha","haw","he","hi","hr","ht","hu","hy","id","is","it",
"ja","jw","ka","kk","km","kn","ko","la","lb","ln","lo","lt","lv",
"mg","mi","mk","ml","mn","mr","ms","mt","my","ne","nl","nn","no",
"oc","pa","pl","ps","pt","ro","ru","sa","sd","si","sk","sl","sn",
"so","sq","sr","su","sv","sw","ta","te","tg","th","tk","tl","tr",
"tt","uk","ur","uz","vi","yi","yo","zh","yue"
]
SENSEVOICE_LANGUAGES = ["auto", "zh", "yue", "en", "ja", "ko", "nospeech"]
# —————— Caches ——————
whisper_pipes = {}
sense_models = {}
dar_pipe = None
# —————— Helpers ——————
def get_whisper_pipe(model_id: str, device: int):
key = (model_id, device)
if key not in whisper_pipes:
whisper_pipes[key] = pipeline(
"automatic-speech-recognition",
model=model_id,
device=device,
chunk_length_s=30,
stride_length_s=5,
return_timestamps=False,
)
return whisper_pipes[key]
def get_sense_model(model_id: str):
if model_id not in sense_models:
device_str = "cuda:0" if torch.cuda.is_available() else "cpu"
sense_models[model_id] = AutoModel(
model=model_id,
vad_model="fsmn-vad",
vad_kwargs={"max_single_segment_time": 300000},
device=device_str,
hub="hf",
)
return sense_models[model_id]
def get_diarization_pipe():
global dar_pipe
if dar_pipe is None:
dar_pipe = DiarizationPipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=True
)
return dar_pipe
# —————— Transcription Functions ——————
def transcribe_whisper(model_id: str, language: str, audio_path: str, device_sel: str, enable_diar: bool):
# select device for Whisper
use_gpu = (device_sel == "GPU" and torch.cuda.is_available())
device = 0 if use_gpu else -1
pipe = get_whisper_pipe(model_id, device)
# full transcription
if language == "auto":
result = pipe(audio_path)
else:
result = pipe(audio_path, generate_kwargs={"language": language})
transcript = result.get("text", "").strip()
diar_text = ""
# optional diarization for Whisper
if enable_diar:
diarizer = get_diarization_pipe()
diarization = diarizer(audio_path)
snippets = []
for turn, _, speaker in diarization.itertracks(yield_label=True):
start_ms = int(turn.start * 1000)
end_ms = int(turn.end * 1000)
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment.export(tmp.name, format="wav")
if language == "auto":
seg_out = pipe(tmp.name)
else:
seg_out = pipe(tmp.name, generate_kwargs={"language": language})
os.unlink(tmp.name)
txt = seg_out.get("text", "").strip()
snippets.append(f"[{speaker}] {txt}")
diar_text = "\n".join(snippets)
return transcript, diar_text
@spaces.GPU
def transcribe_sense(model_id: str, language: str, audio_path: str, enable_punct: bool, enable_diar: bool):
model = get_sense_model(model_id)
# if no diarization, full file
if not enable_diar:
segments = model.generate(
input=audio_path,
cache={},
language=language,
use_itn=True,
batch_size_s=300,
merge_vad=True,
merge_length_s=15,
)
text = rich_transcription_postprocess(segments[0]['text'])
if not enable_punct:
text = re.sub(r"[^\w\s]", "", text)
return text, ""
# with diarization: split by speaker
diarizer = get_diarization_pipe()
diarization = diarizer(audio_path)
speaker_snippets = []
for turn, _, speaker in diarization.itertracks(yield_label=True):
start_ms = int(turn.start * 1000)
end_ms = int(turn.end * 1000)
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment.export(tmp.name, format="wav")
segments = model.generate(
input=tmp.name,
cache={},
language=language,
use_itn=True,
batch_size_s=300,
merge_vad=False,
merge_length_s=0,
)
os.unlink(tmp.name)
txt = rich_transcription_postprocess(segments[0]['text'])
if not enable_punct:
txt = re.sub(r"[^\w\s]", "", txt)
speaker_snippets.append(f"[{speaker}] {txt}")
full_text = "\n".join(speaker_snippets)
# also return full non-diarized transcript for comparison
segments_full = model.generate(
input=audio_path,
cache={},
language=language,
use_itn=True,
batch_size_s=300,
merge_vad=True,
merge_length_s=15,
)
text_full = rich_transcription_postprocess(segments_full[0]['text'])
if not enable_punct:
text_full = re.sub(r"[^\w\s]", "", text_full)
return text_full, full_text
# —————— Gradio UI ——————
demo = gr.Blocks()
with demo:
gr.Markdown("## Whisper vs. SenseVoice (Language, Device & Speaker Diarization)")
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input")
with gr.Row():
# Whisper column
with gr.Column():
gr.Markdown("### Whisper ASR")
whisper_dd = gr.Dropdown(choices=WHISPER_MODELS, value=WHISPER_MODELS[0], label="Whisper Model")
whisper_lang = gr.Dropdown(choices=WHISPER_LANGUAGES, value="auto", label="Whisper Language")
device_radio = gr.Radio(choices=["GPU", "CPU"], value="GPU", label="Device")
diar_check = gr.Checkbox(label="Enable Speaker Diarization", value=False)
whisper_btn = gr.Button("Transcribe with Whisper")
out_whisper = gr.Textbox(label="Transcript")
out_whisper_diar = gr.Textbox(label="Diarized Transcript")
whisper_btn.click(
fn=transcribe_whisper,
inputs=[whisper_dd, whisper_lang, audio_input, device_radio, diar_check],
outputs=[out_whisper, out_whisper_diar]
)
# SenseVoice column
with gr.Column():
gr.Markdown("### FunASR SenseVoice ASR")
sense_dd = gr.Dropdown(choices=SENSEVOICE_MODELS, value=SENSEVOICE_MODELS[0], label="SenseVoice Model")
sense_lang = gr.Dropdown(choices=SENSEVOICE_LANGUAGES, value="auto", label="SenseVoice Language")
punct = gr.Checkbox(label="Enable Punctuation", value=True)
diar_sense = gr.Checkbox(label="Enable Speaker Diarization", value=False)
sense_btn = gr.Button("Transcribe with SenseVoice")
out_sense = gr.Textbox(label="Transcript")
out_sense_diar = gr.Textbox(label="Diarized Transcript")
sense_btn.click(
fn=transcribe_sense,
inputs=[sense_dd, sense_lang, audio_input, punct, diar_sense],
outputs=[out_sense, out_sense_diar]
)
if __name__ == "__main__":
demo.launch()