File size: 15,710 Bytes
a703203
 
 
 
248f5a7
a703203
8c3c2b9
a703203
d181b45
293686e
889f080
248f5a7
4c6b4c5
 
ac8e9cc
4c6b4c5
0ff6c39
eb215ff
a703203
eb215ff
a703203
9d3ca6c
d181b45
 
eb215ff
cd26609
c8399e3
 
7c5f318
2882063
 
 
 
 
7c5f318
 
 
293686e
cb16ac6
293686e
 
7308211
cb16ac6
293686e
 
 
 
68e6569
7c5f318
23b3848
293686e
 
 
 
6a4537b
 
 
cd26609
 
ac8e9cc
 
a703203
ac8e9cc
 
293686e
 
ac8e9cc
 
 
 
293686e
889f080
293686e
 
 
 
 
889f080
293686e
 
cc12a51
293686e
 
 
 
 
 
ac8e9cc
 
293686e
889f080
ac8e9cc
cc12a51
ac8e9cc
 
 
a703203
293686e
 
ac8e9cc
293686e
 
ac8e9cc
a703203
 
293686e
 
a703203
293686e
 
960db60
 
 
8c3c2b9
960db60
 
 
 
 
 
 
 
 
 
 
ef361b0
ac8e9cc
293686e
 
 
e2ee907
ac8e9cc
293686e
ac8e9cc
a703203
293686e
 
 
 
 
 
a703203
293686e
 
 
 
 
 
 
 
a703203
293686e
 
eb215ff
bc257ff
 
 
 
 
 
9ad3ffd
a2f07a4
9ad3ffd
e2ee907
a2f07a4
 
 
 
 
 
 
 
 
 
 
 
9ad3ffd
ac8e9cc
960db60
41ee8bf
293686e
 
 
 
939895d
293686e
939895d
293686e
 
 
 
 
 
8c3c2b9
939895d
 
293686e
 
8c3c2b9
 
 
 
 
 
293686e
 
 
8c3c2b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293686e
41ee8bf
eb215ff
8c3c2b9
c09049b
ac8e9cc
 
eb215ff
293686e
a703203
 
293686e
 
afa19a3
5f6306a
 
293686e
5f6306a
eb215ff
293686e
eb215ff
d181b45
 
293686e
a703203
 
293686e
 
 
a703203
d730ffe
293686e
 
 
079e166
a703203
293686e
 
e2ee907
293686e
 
a703203
293686e
 
 
 
 
 
 
 
 
e2ee907
293686e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import os
import time
import gc
import threading
from itertools import islice
from datetime import datetime
import re  # for parsing <think> blocks
import gradio as gr
import torch
from transformers import pipeline, TextIteratorStreamer
from transformers import AutoTokenizer
from duckduckgo_search import DDGS
import spaces  # Import spaces early to enable ZeroGPU support

# Optional: Disable GPU visibility if you wish to force CPU usage
# os.environ["CUDA_VISIBLE_DEVICES"] = ""

# ------------------------------
# Global Cancellation Event
# ------------------------------
cancel_event = threading.Event()

# ------------------------------
# Torch-Compatible Model Definitions with Adjusted Descriptions
# ------------------------------
MODELS = {
    "Taiwan-ELM-1_1B-Instruct": {"repo_id": "liswei/Taiwan-ELM-1_1B-Instruct", "description": "Taiwan-ELM-1_1B-Instruct"},
    "Taiwan-ELM-270M-Instruct": {"repo_id": "liswei/Taiwan-ELM-270M-Instruct", "description": "Taiwan-ELM-270M-Instruct"},
    # "Granite-4.0-Tiny-Preview": {"repo_id": "ibm-granite/granite-4.0-tiny-preview", "description": "Granite-4.0-Tiny-Preview"},
    "Qwen3-0.6B":    {"repo_id":"Qwen/Qwen3-0.6B","description":"Dense causal language model with 0.6 B total parameters (0.44 B non-embedding), 28 transformer layers, 16 query heads & 8 KV heads, native 32 768-token context window, dual-mode generation, full multilingual & agentic capabilities."},
    "Qwen3-1.7B":    {"repo_id":"Qwen/Qwen3-1.7B","description":"Dense causal language model with 1.7 B total parameters (1.4 B non-embedding), 28 layers, 16 query heads & 8 KV heads, 32 768-token context, stronger reasoning vs. 0.6 B variant, dual-mode inference, instruction following across 100+ languages."},
    "Qwen3-4B":      {"repo_id":"Qwen/Qwen3-4B","description":"Dense causal language model with 4.0 B total parameters (3.6 B non-embedding), 36 layers, 32 query heads & 8 KV heads, native 32 768-token context (extendable to 131 072 via YaRN), balanced mid-range capacity & long-context reasoning."},
    "Qwen3-8B":      {"repo_id":"Qwen/Qwen3-8B","description":"Dense causal language model with 8.2 B total parameters (6.95 B non-embedding), 36 layers, 32 query heads & 8 KV heads, 32 768-token context (131 072 via YaRN), excels at multilingual instruction following & zero-shot tasks."},
    "Qwen3-14B":     {"repo_id":"Qwen/Qwen3-14B","description":"Dense causal language model with 14.8 B total parameters (13.2 B non-embedding), 40 layers, 40 query heads & 8 KV heads, 32 768-token context (131 072 via YaRN), enhanced human preference alignment & advanced agent integration."},
    # "Qwen3-32B":     {"repo_id":"Qwen/Qwen3-32B","description":"Dense causal language model with 32.8 B total parameters (31.2 B non-embedding), 64 layers, 64 query heads & 8 KV heads, 32 768-token context (131 072 via YaRN), flagship variant delivering state-of-the-art reasoning & instruction following."},
    # "Qwen3-30B-A3B": {"repo_id":"Qwen/Qwen3-30B-A3B","description":"Mixture-of-Experts model with 30.5 B total parameters (29.9 B non-embedding, 3.3 B activated per token), 48 layers, 128 experts (8 activated per token), 32 query heads & 4 KV heads, 32 768-token context (131 072 via YaRN), MoE routing for scalable specialized reasoning."},
    # "Qwen3-235B-A22B":{"repo_id":"Qwen/Qwen3-235B-A22B","description":"Mixture-of-Experts model with 235 B total parameters (234 B non-embedding, 22 B activated per token), 94 layers, 128 experts (8 activated per token), 64 query heads & 4 KV heads, 32 768-token context (131 072 via YaRN), ultra-scale reasoning & agentic workflows."},
    "Gemma-3-4B-IT": {"repo_id": "unsloth/gemma-3-4b-it", "description": "Gemma-3-4B-IT"},
    "SmolLM2_135M_Grpo_Gsm8k":{"repo_id":"prithivMLmods/SmolLM2_135M_Grpo_Gsm8k", "desscription":"SmolLM2_135M_Grpo_Gsm8k"},
    "SmolLM2-135M-Instruct-TaiwanChat": {"repo_id": "Luigi/SmolLM2-135M-Instruct-TaiwanChat", "description": "SmolLM2‑135M Instruct fine-tuned on TaiwanChat"},
    "SmolLM2-135M-Instruct": {"repo_id": "HuggingFaceTB/SmolLM2-135M-Instruct", "description": "Original SmolLM2‑135M Instruct"},
    "SmolLM2-360M-Instruct-TaiwanChat": {"repo_id": "Luigi/SmolLM2-360M-Instruct-TaiwanChat", "description": "SmolLM2‑360M Instruct fine-tuned on TaiwanChat"},
    "SmolLM2-360M-Instruct": {"repo_id": "HuggingFaceTB/SmolLM2-360M-Instruct", "description": "Original SmolLM2‑360M Instruct"},
    "Llama-3.2-Taiwan-3B-Instruct": {"repo_id": "lianghsun/Llama-3.2-Taiwan-3B-Instruct", "description": "Llama-3.2-Taiwan-3B-Instruct"},
    "MiniCPM3-4B": {"repo_id": "openbmb/MiniCPM3-4B", "description": "MiniCPM3-4B"},
    "Qwen2.5-3B-Instruct": {"repo_id": "Qwen/Qwen2.5-3B-Instruct", "description": "Qwen2.5-3B-Instruct"},
    "Qwen2.5-7B-Instruct": {"repo_id": "Qwen/Qwen2.5-7B-Instruct", "description": "Qwen2.5-7B-Instruct"},
    "Phi-4-mini-Reasoning": {"repo_id": "microsoft/Phi-4-mini-reasoning", "description": "Phi-4-mini-Reasoning"},
    # "Phi-4-Reasoning":      {"repo_id": "microsoft/Phi-4-reasoning",      "description": "Phi-4-Reasoning"},
    "Phi-4-mini-Instruct": {"repo_id": "microsoft/Phi-4-mini-instruct", "description": "Phi-4-mini-Instruct"},
    "Meta-Llama-3.1-8B-Instruct": {"repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct", "description": "Meta-Llama-3.1-8B-Instruct"},
    "DeepSeek-R1-Distill-Llama-8B": {"repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B", "description": "DeepSeek-R1-Distill-Llama-8B"},
    "Mistral-7B-Instruct-v0.3": {"repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3", "description": "Mistral-7B-Instruct-v0.3"},
    "Qwen2.5-Coder-7B-Instruct": {"repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct", "description": "Qwen2.5-Coder-7B-Instruct"},
    "Qwen2.5-Omni-3B":   {"repo_id": "Qwen/Qwen2.5-Omni-3B",   "description": "Qwen2.5-Omni-3B"},
    "MiMo-7B-RL":        {"repo_id": "XiaomiMiMo/MiMo-7B-RL",   "description": "MiMo-7B-RL"},

}

# Global cache for pipelines to avoid re-loading.
PIPELINES = {}

def load_pipeline(model_name):
    """
    Load and cache a transformers pipeline for text generation.
    Tries bfloat16, falls back to float16 or float32 if unsupported.
    """
    global PIPELINES
    if model_name in PIPELINES:
        return PIPELINES[model_name]
    repo = MODELS[model_name]["repo_id"]
    tokenizer = AutoTokenizer.from_pretrained(repo)
    for dtype in (torch.bfloat16, torch.float16, torch.float32):
        try:
            pipe = pipeline(
                task="text-generation",
                model=repo,
                tokenizer=tokenizer,
                trust_remote_code=True,
                torch_dtype=dtype,
                device_map="auto"
            )
            PIPELINES[model_name] = pipe
            return pipe
        except Exception:
            continue
    # Final fallback
    pipe = pipeline(
        task="text-generation",
        model=repo,
        tokenizer=tokenizer,
        trust_remote_code=True,
        device_map="auto"
    )
    PIPELINES[model_name] = pipe
    return pipe


def retrieve_context(query, max_results=6, max_chars=600):
    """
    Retrieve search snippets from DuckDuckGo (runs in background).
    Returns a list of result strings.
    """
    try:
        with DDGS() as ddgs:
            return [f"{i+1}. {r.get('title','No Title')} - {r.get('body','')[:max_chars]}"
                    for i, r in enumerate(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))]
    except Exception:
        return []

def format_conversation(history, system_prompt, tokenizer):
    if hasattr(tokenizer, "chat_template") and tokenizer.chat_template:
        messages = [{"role": "system", "content": system_prompt.strip()}] + history
        return tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, enable_thinking=True)
    else:
        # Fallback for base LMs without chat template
        prompt = system_prompt.strip() + "\n"
        for msg in history:
            if msg['role'] == 'user':
                prompt += "User: " + msg['content'].strip() + "\n"
            elif msg['role'] == 'assistant':
                prompt += "Assistant: " + msg['content'].strip() + "\n"
        if not prompt.strip().endswith("Assistant:"):
            prompt += "Assistant: "
        return prompt

@spaces.GPU(duration=60)
def chat_response(user_msg, chat_history, system_prompt,
                  enable_search, max_results, max_chars,
                  model_name, max_tokens, temperature,
                  top_k, top_p, repeat_penalty, search_timeout):
    """
    Generates streaming chat responses, optionally with background web search.
    """
    cancel_event.clear()
    history = list(chat_history or [])
    history.append({'role': 'user', 'content': user_msg})

    # Launch web search if enabled
    debug = ''
    search_results = []
    if enable_search:
        debug = 'Search task started.'
        thread_search = threading.Thread(
            target=lambda: search_results.extend(
                retrieve_context(user_msg, int(max_results), int(max_chars))
            )
        )
        thread_search.daemon = True
        thread_search.start()
    else:
        debug = 'Web search disabled.'

    try:

        # merge any fetched search results into the system prompt
        if search_results:
            enriched = system_prompt.strip() + "\n\nRelevant context:\n" + "\n".join(search_results)
        else:
            enriched = system_prompt

        # wait up to 1s for snippets, then replace debug with them
        if enable_search:
            thread_search.join(timeout=float(search_timeout))
            if search_results:
                debug = "### Search results merged into prompt\n\n" + "\n".join(
                    f"- {r}" for r in search_results
                )
            else:
                debug = "*No web search results found.*"

        # merge fetched snippets into the system prompt
        if search_results:
            enriched = system_prompt.strip() + "\n\nRelevant context:\n" + "\n".join(search_results)
        else:
            enriched = system_prompt

        pipe = load_pipeline(model_name)
        prompt = format_conversation(history, enriched, pipe.tokenizer)
        prompt_debug = f"\n\n--- Prompt Preview ---\n```\n{prompt}\n```"
        streamer = TextIteratorStreamer(pipe.tokenizer,
                                        skip_prompt=True,
                                        skip_special_tokens=True)
        gen_thread = threading.Thread(
            target=pipe,
            args=(prompt,),
            kwargs={
                'max_new_tokens': max_tokens,
                'temperature': temperature,
                'top_k': top_k,
                'top_p': top_p,
                'repetition_penalty': repeat_penalty,
                'streamer': streamer,
                'return_full_text': False,
            }
        )
        gen_thread.start()

        # Buffers for thought vs answer
        thought_buf = ''
        answer_buf = ''
        in_thought = False

        # Stream tokens
        for chunk in streamer:
            if cancel_event.is_set():
                break
            text = chunk

            # Detect start of thinking
            if not in_thought and '<think>' in text:
                in_thought = True
                # Insert thought placeholder
                history.append({
                    'role': 'assistant',
                    'content': '',
                    'metadata': {'title': '💭 Thought'}
                })
                # Capture after opening tag
                after = text.split('<think>', 1)[1]
                thought_buf += after
                # If closing tag in same chunk
                if '</think>' in thought_buf:
                    before, after2 = thought_buf.split('</think>', 1)
                    history[-1]['content'] = before.strip()
                    in_thought = False
                    # Start answer buffer
                    answer_buf = after2
                    history.append({'role': 'assistant', 'content': answer_buf})
                else:
                    history[-1]['content'] = thought_buf
                yield history, debug
                continue

            # Continue thought streaming
            if in_thought:
                thought_buf += text
                if '</think>' in thought_buf:
                    before, after2 = thought_buf.split('</think>', 1)
                    history[-1]['content'] = before.strip()
                    in_thought = False
                    # Start answer buffer
                    answer_buf = after2
                    history.append({'role': 'assistant', 'content': answer_buf})
                else:
                    history[-1]['content'] = thought_buf
                yield history, debug
                continue

            # Stream answer
            if not answer_buf:
                history.append({'role': 'assistant', 'content': ''})
            answer_buf += text
            history[-1]['content'] = answer_buf
            yield history, debug

        gen_thread.join()
        yield history, debug + prompt_debug
    except Exception as e:
        history.append({'role': 'assistant', 'content': f"Error: {e}"})
        yield history, debug
    finally:
        gc.collect()


def cancel_generation():
    cancel_event.set()
    return 'Generation cancelled.'


def update_default_prompt(enable_search):
    today = datetime.now().strftime('%Y-%m-%d')
    return f"You are a helpful assistant. Today is {today}."

# ------------------------------
# Gradio UI
# ------------------------------
with gr.Blocks(title="LLM Inference with ZeroGPU") as demo:
    gr.Markdown("## 🧠 ZeroGPU LLM Inference with Web Search")
    gr.Markdown("Interact with the model. Select parameters and chat below.")
    with gr.Row():
        with gr.Column(scale=3):
            model_dd = gr.Dropdown(label="Select Model", choices=list(MODELS.keys()), value=list(MODELS.keys())[0])
            search_chk = gr.Checkbox(label="Enable Web Search", value=True)
            sys_prompt = gr.Textbox(label="System Prompt", lines=3, value=update_default_prompt(search_chk.value))
            gr.Markdown("### Generation Parameters")
            max_tok = gr.Slider(64, 16384, value=2048, step=32, label="Max Tokens")
            temp = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
            k = gr.Slider(1, 100, value=40, step=1, label="Top-K")
            p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
            rp = gr.Slider(1.0, 2.0, value=1.2, step=0.1, label="Repetition Penalty")
            gr.Markdown("### Web Search Settings")
            mr = gr.Number(value=6, precision=0, label="Max Results")
            mc = gr.Number(value=600, precision=0, label="Max Chars/Result")
            st = gr.Slider(minimum=0.0, maximum=30.0, step=0.5, value=5.0, label="Search Timeout (s)")
            clr = gr.Button("Clear Chat")
            cnl = gr.Button("Cancel Generation")
        with gr.Column(scale=7):
            chat = gr.Chatbot(type="messages")
            txt = gr.Textbox(placeholder="Type your message and press Enter...")
            dbg = gr.Markdown()

    search_chk.change(fn=update_default_prompt, inputs=search_chk, outputs=sys_prompt)
    clr.click(fn=lambda: ([], "", ""), outputs=[chat, txt, dbg])
    cnl.click(fn=cancel_generation, outputs=dbg)
    txt.submit(fn=chat_response,
               inputs=[txt, chat, sys_prompt, search_chk, mr, mc,
                       model_dd, max_tok, temp, k, p, rp, st],
               outputs=[chat, dbg])
    demo.launch()