Spaces:
Running
on
Zero
Running
on
Zero
metadata
title: ZeroGPU-LLM-Inference
emoji: 🧠
colorFrom: pink
colorTo: purple
sdk: gradio
sdk_version: 5.29.0
app_file: app.py
pinned: false
license: apache-2.0
short_description: Streaming LLM chat with web search and debug
This Gradio app provides token-streaming, chat-style inference on a wide variety of Transformer models—leveraging ZeroGPU for free GPU acceleration on HF Spaces.
Key features:
- Real-time DuckDuckGo web search (background thread, configurable timeout) with results injected into the system prompt.
- Prompt preview panel for debugging and prompt-engineering insights—see exactly what’s sent to the model.
- Thought vs. Answer streaming: any
<think>…</think>
blocks emitted by the model are shown as separate “💭 Thought.” - Cancel button to immediately stop generation.
- Dynamic system prompt: automatically inserts today’s date when you toggle web search.
- Extensive model selection: over 30 LLMs (from Phi-4 mini to Qwen3-14B, SmolLM2, Taiwan-ELM, Mistral, Meta-Llama, MiMo, Gemma, DeepSeek-R1, etc.).
- Memory-safe design: loads one model at a time, clears cache after each generation.
- Customizable generation parameters: max tokens, temperature, top-k, top-p, repetition penalty.
- Web-search settings: max results, max chars per result, search timeout.
- Requirements pinned to ensure reproducible deployment.
🔄 Supported Models
Use the dropdown to select any of these:
Name | Repo ID |
---|---|
Taiwan-ELM-1_1B-Instruct | liswei/Taiwan-ELM-1_1B-Instruct |
Taiwan-ELM-270M-Instruct | liswei/Taiwan-ELM-270M-Instruct |
Qwen3-0.6B | Qwen/Qwen3-0.6B |
Qwen3-1.7B | Qwen/Qwen3-1.7B |
Qwen3-4B | Qwen/Qwen3-4B |
Qwen3-8B | Qwen/Qwen3-8B |
Qwen3-14B | Qwen/Qwen3-14B |
Gemma-3-4B-IT | unsloth/gemma-3-4b-it |
SmolLM2-135M-Instruct-TaiwanChat | Luigi/SmolLM2-135M-Instruct-TaiwanChat |
SmolLM2-135M-Instruct | HuggingFaceTB/SmolLM2-135M-Instruct |
SmolLM2-360M-Instruct-TaiwanChat | Luigi/SmolLM2-360M-Instruct-TaiwanChat |
Llama-3.2-Taiwan-3B-Instruct | lianghsun/Llama-3.2-Taiwan-3B-Instruct |
MiniCPM3-4B | openbmb/MiniCPM3-4B |
Qwen2.5-3B-Instruct | Qwen/Qwen2.5-3B-Instruct |
Qwen2.5-7B-Instruct | Qwen/Qwen2.5-7B-Instruct |
Phi-4-mini-Reasoning | microsoft/Phi-4-mini-reasoning |
Phi-4-mini-Instruct | microsoft/Phi-4-mini-instruct |
Meta-Llama-3.1-8B-Instruct | MaziyarPanahi/Meta-Llama-3.1-8B-Instruct |
DeepSeek-R1-Distill-Llama-8B | unsloth/DeepSeek-R1-Distill-Llama-8B |
Mistral-7B-Instruct-v0.3 | MaziyarPanahi/Mistral-7B-Instruct-v0.3 |
Qwen2.5-Coder-7B-Instruct | Qwen/Qwen2.5-Coder-7B-Instruct |
Qwen2.5-Omni-3B | Qwen/Qwen2.5-Omni-3B |
MiMo-7B-RL | XiaomiMiMo/MiMo-7B-RL |
(…and more can easily be added in MODELS
in app.py
.)
⚙️ Generation & Search Parameters
Max Tokens: 64–16384
Temperature: 0.1–2.0
Top-K: 1–100
Top-P: 0.1–1.0
Repetition Penalty: 1.0–2.0
Enable Web Search: on/off
Max Results: integer
Max Chars/Result: integer
Search Timeout (s): 0.0–30.0
🚀 How It Works
- User message enters chat history.
- If search is enabled, a background DuckDuckGo thread fetches snippets.
- After up to Search Timeout seconds, snippets merge into the system prompt.
- The selected model pipeline is loaded (bf16→f16→f32 fallback) on ZeroGPU.
- Prompt is formatted—any
<think>…</think>
blocks will be streamed as separate “💭 Thought.” - Tokens stream to the Chatbot UI. Press Cancel to stop mid-generation.