File size: 7,855 Bytes
293413b cb8303f 293413b cb8303f aa6b888 588cb6a a2d5223 588cb6a cb8303f bdbefdd 588cb6a a29c4ff 588cb6a 58272f8 588cb6a a29c4ff 48a65b5 9c89db3 48a65b5 9c89db3 48a65b5 9c89db3 e54e8f7 9c89db3 a29c4ff 588cb6a 48a65b5 588cb6a a2d5223 a29c4ff a2d5223 cb8303f 48a65b5 588cb6a a29c4ff 588cb6a cb8303f 48a65b5 9c89db3 48a65b5 a2d5223 aa6b888 a2d5223 58272f8 aa6b888 588cb6a aa6b888 8583b57 9c89db3 a29c4ff 8583b57 a29c4ff aa6b888 a2d5223 cb8303f 588cb6a cb8303f 293413b 588cb6a a2d5223 588cb6a cb8303f 293413b 8583b57 293413b 588cb6a 293413b 8583b57 293413b 8583b57 293413b 8583b57 59b5835 392cd96 293413b 392cd96 293413b 8583b57 cb8303f 588cb6a a2d5223 a29c4ff 48a65b5 9c89db3 48a65b5 a29c4ff a2d5223 9c89db3 a2d5223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# app.py
import json
import time
import numpy as np
from sentence_transformers import SentenceTransformer
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from llama_cpp import Llama
from huggingface_hub import login, hf_hub_download
import logging
import os
import faiss
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
# Authenticate with Hugging Fac
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
logger.error("HF_TOKEN environment variable not set.")
raise ValueError("HF_TOKEN not set")
login(token=hf_token)
# Models
sentence_transformer_model = "all-MiniLM-L6-v2"
repo_id = "bartowski/deepcogito_cogito-v1-preview-llama-3B-GGUF"
filename = "deepcogito_cogito-v1-preview-llama-3B-Q4_K_M.gguf" # Updated to Cogito Q4_K_M
# Define FAQs (unchanged)
faqs = [
{"question": "What is your name?", "answer": "My name is Tim Luka Horstmann."},
{"question": "Where do you live?", "answer": "I live in Paris, France."},
{"question": "What is your education?", "answer": "I am currently pursuing a MSc in Data and AI at Institut Polytechnique de Paris. I have an MPhil in Advanced Computer Science from the University of Cambridge, and a BSc in Business Informatics from RheinMain University of Applied Sciences."},
{"question": "What are your skills?", "answer": "I am proficient in Python, Java, SQL, Cypher, SPARQL, VBA, JavaScript, HTML/CSS, and Ruby. I also use tools like PyTorch, Hugging Face, Scikit-Learn, NumPy, Pandas, Matplotlib, Jupyter, Git, Bash, IoT, Ansible, QuickSight, and Wordpress."},
{"question": "How are you?", "answer": "I’m doing great, thanks for asking! I’m enjoying life in Paris and working on some exciting AI projects."},
{"question": "What do you do?", "answer": "I’m a Computer Scientist and AI enthusiast, currently pursuing a MSc in Data and AI at Institut Polytechnique de Paris and interning as a Machine Learning Research Engineer at Hi! PARIS."},
{"question": "How’s it going?", "answer": "Things are going well, thanks! I’m busy with my studies and research, but I love the challenges and opportunities I get to explore."},
]
try:
# Load CV embeddings and build FAISS index (unchanged)
logger.info("Loading CV embeddings from cv_embeddings.json")
with open("cv_embeddings.json", "r", encoding="utf-8") as f:
cv_data = json.load(f)
cv_chunks = [item["chunk"] for item in cv_data]
cv_embeddings = np.array([item["embedding"] for item in cv_data]).astype('float32')
faiss.normalize_L2(cv_embeddings)
faiss_index = faiss.IndexFlatIP(cv_embeddings.shape[1])
faiss_index.add(cv_embeddings)
logger.info("FAISS index built successfully")
# Load embedding model (unchanged)
logger.info("Loading SentenceTransformer model")
embedder = SentenceTransformer(sentence_transformer_model, device="cpu")
logger.info("SentenceTransformer model loaded")
# Compute FAQ embeddings (unchanged)
faq_questions = [faq["question"] for faq in faqs]
faq_embeddings = embedder.encode(faq_questions, convert_to_numpy=True).astype("float32")
faiss.normalize_L2(faq_embeddings)
# Load Cogito model
logger.info(f"Loading {filename} model")
model_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
local_dir="/app/cache" if os.getenv("HF_HOME") else None,
token=hf_token,
)
generator = Llama(
model_path=model_path,
n_ctx=1024,
n_threads=2,
n_batch=512,
n_gpu_layers=0,
verbose=True,
)
logger.info(f"{filename} model loaded")
except Exception as e:
logger.error(f"Startup error: {str(e)}", exc_info=True)
raise
def retrieve_context(query, top_k=2):
try:
query_embedding = embedder.encode(query, convert_to_numpy=True).astype("float32")
query_embedding = query_embedding.reshape(1, -1)
faiss.normalize_L2(query_embedding)
distances, indices = faiss_index.search(query_embedding, top_k)
return "\n".join([cv_chunks[i] for i in indices[0]])
except Exception as e:
logger.error(f"Error in retrieve_context: {str(e)}")
raise
def stream_response(query):
logger.info(f"Processing query: {query}")
start_time = time.time()
first_token_logged = False
# FAQ check first
query_embedding = embedder.encode(query, convert_to_numpy=True).astype("float32")
query_embedding = query_embedding.reshape(1, -1)
faiss.normalize_L2(query_embedding)
similarities = np.dot(faq_embeddings, query_embedding.T).flatten()
max_sim = np.max(similarities)
if max_sim > 0.9:
idx = np.argmax(similarities)
yield f"data: {faqs[idx]['answer']}\n\n"
yield "data: [DONE]\n\n"
return
context = retrieve_context(query, top_k=2)
messages = [
{
"role": "system",
"content": (
"You are Tim Luka Horstmann, a Computer Scientist. A user is asking you a question. Respond as yourself, using the first person, in a friendly and concise manner. "
"For questions about your CV, base your answer *exclusively* on the provided CV information below and do not add any details not explicitly stated. "
"For casual questions not covered by the CV, respond naturally but limit answers to general truths about yourself (e.g., your current location is Paris, France, or your field is AI) "
"and say 'I don’t have specific details to share about that' if pressed for specifics beyond the CV or FAQs. Do not invent facts, experiences, or opinions not supported by the CV or FAQs. "
f"CV: {context}"
)
},
{"role": "user", "content": query}
]
buffer = ""
for chunk in generator.create_chat_completion(
messages=messages,
max_tokens=512,
stream=True,
temperature=0.3,
top_p=0.7,
repeat_penalty=1.2
):
text = chunk['choices'][0]['delta'].get('content', '')
if text:
buffer += text
if not first_token_logged and time.time() - start_time > 0:
logger.info(f"First token time: {time.time() - start_time:.2f}s")
first_token_logged = True
# Yield when buffer contains a word boundary (space, punctuation, or reasonable length)
if any(buffer.endswith(char) for char in [" ", ".", ",", "!", "?"]) or len(buffer) > 20:
yield f"data: {buffer}\n\n"
buffer = ""
if buffer: # Flush remaining buffer
yield f"data: {buffer}\n\n"
yield "data: [DONE]\n\n"
class QueryRequest(BaseModel):
data: list
@app.post("/api/predict")
async def predict(request: QueryRequest):
if not request.data or not isinstance(request.data, list) or len(request.data) < 1:
raise HTTPException(status_code=400, detail="Invalid input: 'data' must be a non-empty list")
query = request.data[0]
return StreamingResponse(stream_response(query), media_type="text/event-stream")
@app.get("/health")
async def health_check():
return {"status": "healthy"}
@app.get("/model_info")
async def model_info():
return {
"model_name": "deepcogito_cogito-v1-preview-llama-3B-GGUF",
"model_size": "3B",
"quantization": "Q4_K_M",
"embedding_model": sentence_transformer_model,
"faiss_index_size": len(cv_chunks),
"faiss_index_dim": cv_embeddings.shape[1],
}
@app.on_event("startup")
async def warm_up_model():
logger.info("Warming up the model...")
dummy_query = "Hi"
for _ in stream_response(dummy_query):
pass
logger.info("Model warm-up complete.") |