website / app.py
Tim Luka Horstmann
Updated straeming
392cd96
raw
history blame
7.86 kB
# app.py
import json
import time
import numpy as np
from sentence_transformers import SentenceTransformer
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from llama_cpp import Llama
from huggingface_hub import login, hf_hub_download
import logging
import os
import faiss
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
# Authenticate with Hugging Fac
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
logger.error("HF_TOKEN environment variable not set.")
raise ValueError("HF_TOKEN not set")
login(token=hf_token)
# Models
sentence_transformer_model = "all-MiniLM-L6-v2"
repo_id = "bartowski/deepcogito_cogito-v1-preview-llama-3B-GGUF"
filename = "deepcogito_cogito-v1-preview-llama-3B-Q4_K_M.gguf" # Updated to Cogito Q4_K_M
# Define FAQs (unchanged)
faqs = [
{"question": "What is your name?", "answer": "My name is Tim Luka Horstmann."},
{"question": "Where do you live?", "answer": "I live in Paris, France."},
{"question": "What is your education?", "answer": "I am currently pursuing a MSc in Data and AI at Institut Polytechnique de Paris. I have an MPhil in Advanced Computer Science from the University of Cambridge, and a BSc in Business Informatics from RheinMain University of Applied Sciences."},
{"question": "What are your skills?", "answer": "I am proficient in Python, Java, SQL, Cypher, SPARQL, VBA, JavaScript, HTML/CSS, and Ruby. I also use tools like PyTorch, Hugging Face, Scikit-Learn, NumPy, Pandas, Matplotlib, Jupyter, Git, Bash, IoT, Ansible, QuickSight, and Wordpress."},
{"question": "How are you?", "answer": "I’m doing great, thanks for asking! I’m enjoying life in Paris and working on some exciting AI projects."},
{"question": "What do you do?", "answer": "I’m a Computer Scientist and AI enthusiast, currently pursuing a MSc in Data and AI at Institut Polytechnique de Paris and interning as a Machine Learning Research Engineer at Hi! PARIS."},
{"question": "How’s it going?", "answer": "Things are going well, thanks! I’m busy with my studies and research, but I love the challenges and opportunities I get to explore."},
]
try:
# Load CV embeddings and build FAISS index (unchanged)
logger.info("Loading CV embeddings from cv_embeddings.json")
with open("cv_embeddings.json", "r", encoding="utf-8") as f:
cv_data = json.load(f)
cv_chunks = [item["chunk"] for item in cv_data]
cv_embeddings = np.array([item["embedding"] for item in cv_data]).astype('float32')
faiss.normalize_L2(cv_embeddings)
faiss_index = faiss.IndexFlatIP(cv_embeddings.shape[1])
faiss_index.add(cv_embeddings)
logger.info("FAISS index built successfully")
# Load embedding model (unchanged)
logger.info("Loading SentenceTransformer model")
embedder = SentenceTransformer(sentence_transformer_model, device="cpu")
logger.info("SentenceTransformer model loaded")
# Compute FAQ embeddings (unchanged)
faq_questions = [faq["question"] for faq in faqs]
faq_embeddings = embedder.encode(faq_questions, convert_to_numpy=True).astype("float32")
faiss.normalize_L2(faq_embeddings)
# Load Cogito model
logger.info(f"Loading {filename} model")
model_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
local_dir="/app/cache" if os.getenv("HF_HOME") else None,
token=hf_token,
)
generator = Llama(
model_path=model_path,
n_ctx=1024,
n_threads=2,
n_batch=512,
n_gpu_layers=0,
verbose=True,
)
logger.info(f"{filename} model loaded")
except Exception as e:
logger.error(f"Startup error: {str(e)}", exc_info=True)
raise
def retrieve_context(query, top_k=2):
try:
query_embedding = embedder.encode(query, convert_to_numpy=True).astype("float32")
query_embedding = query_embedding.reshape(1, -1)
faiss.normalize_L2(query_embedding)
distances, indices = faiss_index.search(query_embedding, top_k)
return "\n".join([cv_chunks[i] for i in indices[0]])
except Exception as e:
logger.error(f"Error in retrieve_context: {str(e)}")
raise
def stream_response(query):
logger.info(f"Processing query: {query}")
start_time = time.time()
first_token_logged = False
# FAQ check first
query_embedding = embedder.encode(query, convert_to_numpy=True).astype("float32")
query_embedding = query_embedding.reshape(1, -1)
faiss.normalize_L2(query_embedding)
similarities = np.dot(faq_embeddings, query_embedding.T).flatten()
max_sim = np.max(similarities)
if max_sim > 0.9:
idx = np.argmax(similarities)
yield f"data: {faqs[idx]['answer']}\n\n"
yield "data: [DONE]\n\n"
return
context = retrieve_context(query, top_k=2)
messages = [
{
"role": "system",
"content": (
"You are Tim Luka Horstmann, a Computer Scientist. A user is asking you a question. Respond as yourself, using the first person, in a friendly and concise manner. "
"For questions about your CV, base your answer *exclusively* on the provided CV information below and do not add any details not explicitly stated. "
"For casual questions not covered by the CV, respond naturally but limit answers to general truths about yourself (e.g., your current location is Paris, France, or your field is AI) "
"and say 'I don’t have specific details to share about that' if pressed for specifics beyond the CV or FAQs. Do not invent facts, experiences, or opinions not supported by the CV or FAQs. "
f"CV: {context}"
)
},
{"role": "user", "content": query}
]
buffer = ""
for chunk in generator.create_chat_completion(
messages=messages,
max_tokens=512,
stream=True,
temperature=0.3,
top_p=0.7,
repeat_penalty=1.2
):
text = chunk['choices'][0]['delta'].get('content', '')
if text:
buffer += text
if not first_token_logged and time.time() - start_time > 0:
logger.info(f"First token time: {time.time() - start_time:.2f}s")
first_token_logged = True
# Yield when buffer contains a word boundary (space, punctuation, or reasonable length)
if any(buffer.endswith(char) for char in [" ", ".", ",", "!", "?"]) or len(buffer) > 20:
yield f"data: {buffer}\n\n"
buffer = ""
if buffer: # Flush remaining buffer
yield f"data: {buffer}\n\n"
yield "data: [DONE]\n\n"
class QueryRequest(BaseModel):
data: list
@app.post("/api/predict")
async def predict(request: QueryRequest):
if not request.data or not isinstance(request.data, list) or len(request.data) < 1:
raise HTTPException(status_code=400, detail="Invalid input: 'data' must be a non-empty list")
query = request.data[0]
return StreamingResponse(stream_response(query), media_type="text/event-stream")
@app.get("/health")
async def health_check():
return {"status": "healthy"}
@app.get("/model_info")
async def model_info():
return {
"model_name": "deepcogito_cogito-v1-preview-llama-3B-GGUF",
"model_size": "3B",
"quantization": "Q4_K_M",
"embedding_model": sentence_transformer_model,
"faiss_index_size": len(cv_chunks),
"faiss_index_dim": cv_embeddings.shape[1],
}
@app.on_event("startup")
async def warm_up_model():
logger.info("Warming up the model...")
dummy_query = "Hi"
for _ in stream_response(dummy_query):
pass
logger.info("Model warm-up complete.")