Spaces:
Running
Running
File size: 7,797 Bytes
bc44dae 7055a09 3e4c841 bc44dae 621ada9 d3d3301 621ada9 bc44dae 621ada9 bc44dae 621ada9 bc44dae 621ada9 bc44dae 7055a09 bc44dae 621ada9 bc44dae 621ada9 bc44dae 3e4c841 bc44dae 621ada9 bc44dae 621ada9 3e4c841 621ada9 7055a09 621ada9 7055a09 621ada9 bc44dae 621ada9 7055a09 bc44dae 7055a09 bc44dae 3e4c841 621ada9 bc44dae 7055a09 621ada9 7055a09 621ada9 bc44dae 621ada9 bc44dae 621ada9 bc44dae 3e4c841 7055a09 bc44dae 621ada9 bc44dae 621ada9 7055a09 bc44dae 3e4c841 bc44dae 3e4c841 621ada9 3e4c841 bc44dae 7055a09 bc44dae 7055a09 bc44dae 3e4c841 621ada9 3e4c841 621ada9 bc44dae 7055a09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import pipeline
import torch
from fastapi.middleware.cors import CORSMiddleware
from typing import Dict, Any, Optional
import os # Import os module
# Inisialisasi aplikasi FastAPI
app = FastAPI(
title="LyonPoy Model Inference API",
description="API untuk mengakses 11 model machine learning",
version="1.0.0"
)
# Konfigurasi CORS untuk frontend eksternal
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Konfigurasi Model
MODEL_MAP = {
"tinny-llama": "Lyon28/Tinny-Llama",
"pythia": "Lyon28/Pythia",
"bert-tinny": "Lyon28/Bert-Tinny",
"albert-base-v2": "Lyon28/Albert-Base-V2",
"t5-small": "Lyon28/T5-Small",
"gpt-2": "Lyon28/GPT-2",
"gpt-neo": "Lyon28/GPT-Neo",
"distilbert-base-uncased": "Lyon28/Distilbert-Base-Uncased",
"distil-gpt-2": "Lyon28/Distil_GPT-2",
"gpt-2-tinny": "Lyon28/GPT-2-Tinny",
"electra-small": "Lyon28/Electra-Small"
}
TASK_MAP = {
"text-generation": ["gpt-2", "gpt-neo", "distil-gpt-2", "gpt-2-tinny", "tinny-llama", "pythia"],
"text-classification": ["bert-tinny", "albert-base-v2", "distilbert-base-uncased", "electra-small"],
"text2text-generation": ["t5-small"]
}
class InferenceRequest(BaseModel):
text: str
model_id: Optional[str] = "gpt-2" # Default model
max_length: int = 100
temperature: float = 0.9
top_p: float = 0.95
# Helper functions
def get_task(model_id: str) -> str:
for task, models in TASK_MAP.items():
if model_id in models:
return task
# Default to text-generation if not found (or raise an error)
return "text-generation"
# Event startup untuk inisialisasi model
@app.on_event("startup")
async def load_models():
app.state.pipelines = {}
print("🟢 Semua model siap digunakan!")
# Menyetel HF_HOME untuk mengatasi masalah izin cache
os.environ['HF_HOME'] = '/tmp/.cache/huggingface'
os.makedirs(os.environ['HF_HOME'], exist_ok=True)
# Endpoint utama
@app.get("/")
async def root():
return {
"message": "Selamat datang di Lyon28 Model API",
"endpoints": {
"documentation": "/docs",
"model_list": "/models",
"health_check": "/health",
"inference_with_model": "/inference/{model_id}",
"inference_general": "/inference"
},
"total_models": len(MODEL_MAP),
"usage_examples": {
"specific_model": "POST /inference/gpt-2 with JSON body",
"general_inference": "POST /inference with model_id in JSON body"
}
}
# Endpoint untuk list model
@app.get("/models")
async def list_models():
return {
"available_models": list(MODEL_MAP.keys()),
"total_models": len(MODEL_MAP)
}
# Endpoint health check
@app.get("/health")
async def health_check():
return {
"status": "healthy",
"gpu_available": torch.cuda.is_available(),
"gpu_type": torch.cuda.get_device_name(0) if torch.cuda.is_available() else "CPU-only"
}
# NEW: General inference endpoint (handles POST /inference)
@app.post("/inference")
async def general_inference(request: InferenceRequest):
"""
General inference endpoint that accepts model_id in the request body
"""
return await process_inference(request.model_id, request)
# Endpoint inference dengan model_id di path
@app.post("/inference/{model_id}")
async def model_inference(model_id: str, request: InferenceRequest):
"""
Specific model inference endpoint with model_id in path
"""
return await process_inference(model_id, request)
# Shared inference processing function
async def process_inference(model_id: str, request: InferenceRequest):
try:
# Pastikan model_id dalam lowercase agar sesuai dengan MODEL_MAP
model_id = model_id.lower()
# Validasi model ID
if model_id not in MODEL_MAP:
available_models = ", ".join(MODEL_MAP.keys())
raise HTTPException(
status_code=404,
detail=f"Model '{model_id}' tidak ditemukan. Model yang tersedia: {available_models}"
)
# Dapatkan task yang sesuai
task = get_task(model_id)
# Load model jika belum ada di memory
if model_id not in app.state.pipelines:
print(f"⏳ Memuat model {model_id} untuk task {task}...")
# Menggunakan device=-1 (CPU) sebagai default yang aman
# Jika Anda yakin Hugging Face Space Anda memiliki GPU, gunakan device=0
device_to_use = 0 if torch.cuda.is_available() else -1
# Menyesuaikan dtype berdasarkan device
dtype_to_use = torch.float16 if torch.cuda.is_available() else torch.float32
try:
app.state.pipelines[model_id] = pipeline(
task=task,
model=MODEL_MAP[model_id],
device=device_to_use,
torch_dtype=dtype_to_use
)
print(f"✅ Model {model_id} berhasil dimuat!")
except Exception as load_error:
print(f"❌ Gagal memuat model {model_id}: {load_error}")
raise HTTPException(
status_code=503,
detail=f"Gagal memuat model {model_id}. Coba lagi nanti."
)
pipe = app.state.pipelines[model_id]
# Proses berdasarkan task
if task == "text-generation":
result = pipe(
request.text,
max_length=request.max_length,
temperature=request.temperature,
top_p=request.top_p,
do_sample=True
)[0]['generated_text']
elif task == "text-classification":
# Untuk text-classification, output adalah list of dict, kita ambil yang pertama
output = pipe(request.text)[0]
result = {
"label": output['label'],
"confidence": round(output['score'], 4)
}
elif task == "text2text-generation":
# Untuk text2text-generation, output juga list of dict
result = pipe(
request.text,
max_length=request.max_length
)[0]['generated_text']
else:
# Fallback untuk task yang tidak terduga, meski harusnya terhandle oleh get_task
raise HTTPException(
status_code=500,
detail=f"Tugas ({task}) untuk model {model_id} tidak didukung atau tidak dikenali."
)
return {
"result": result,
"model_used": model_id,
"task": task,
"status": "success"
}
except HTTPException as he:
# Re-raise HTTP exceptions
raise he
except Exception as e:
# Log error lebih detail untuk debugging
print(f"‼️ Error saat memproses model {model_id}: {e}")
import traceback
traceback.print_exc() # Mencetak full traceback ke log
raise HTTPException(
status_code=500,
detail=f"Error processing request: {str(e)}. Cek log server untuk detail."
)
# Error handler untuk 404
@app.exception_handler(404)
async def not_found_handler(request, exc):
return {
"error": "Endpoint tidak ditemukan",
"available_endpoints": [
"GET /",
"GET /models",
"GET /health",
"POST /inference",
"POST /inference/{model_id}"
],
"tip": "Gunakan /docs untuk dokumentasi lengkap"
} |