Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -3,17 +3,25 @@ from pydantic import BaseModel
|
|
3 |
from transformers import pipeline
|
4 |
import torch
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
app.add_middleware(
|
11 |
CORSMiddleware,
|
12 |
allow_origins=["*"],
|
|
|
13 |
allow_methods=["*"],
|
14 |
allow_headers=["*"],
|
15 |
)
|
16 |
|
|
|
17 |
MODEL_MAP = {
|
18 |
"tinny-llama": "Lyon28/Tinny-Llama",
|
19 |
"pythia": "Lyon28/Pythia",
|
@@ -38,44 +46,85 @@ class InferenceRequest(BaseModel):
|
|
38 |
text: str
|
39 |
max_length: int = 100
|
40 |
temperature: float = 0.9
|
|
|
41 |
|
42 |
-
|
|
|
43 |
for task, models in TASK_MAP.items():
|
44 |
if model_id in models:
|
45 |
return task
|
46 |
return "text-generation"
|
47 |
|
|
|
48 |
@app.on_event("startup")
|
49 |
async def load_models():
|
50 |
-
# Initialize models (optional: pre-load critical models)
|
51 |
app.state.pipelines = {}
|
52 |
-
print("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
@app.post("/inference/{model_id}")
|
55 |
async def model_inference(model_id: str, request: InferenceRequest):
|
56 |
try:
|
|
|
57 |
if model_id not in MODEL_MAP:
|
58 |
-
raise HTTPException(
|
|
|
|
|
|
|
59 |
|
|
|
60 |
task = get_task(model_id)
|
61 |
|
62 |
-
# Load
|
63 |
if model_id not in app.state.pipelines:
|
64 |
app.state.pipelines[model_id] = pipeline(
|
65 |
task=task,
|
66 |
model=MODEL_MAP[model_id],
|
67 |
-
|
68 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
69 |
)
|
|
|
70 |
|
71 |
pipe = app.state.pipelines[model_id]
|
72 |
|
73 |
-
#
|
74 |
if task == "text-generation":
|
75 |
result = pipe(
|
76 |
request.text,
|
77 |
max_length=request.max_length,
|
78 |
-
temperature=request.temperature
|
|
|
79 |
)[0]['generated_text']
|
80 |
|
81 |
elif task == "text-classification":
|
@@ -86,17 +135,19 @@ async def model_inference(model_id: str, request: InferenceRequest):
|
|
86 |
}
|
87 |
|
88 |
elif task == "text2text-generation":
|
89 |
-
result = pipe(
|
|
|
|
|
|
|
90 |
|
91 |
return {"result": result}
|
92 |
|
93 |
except Exception as e:
|
94 |
-
raise HTTPException(
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
return {"available_models": list(MODEL_MAP.keys())}
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
3 |
from transformers import pipeline
|
4 |
import torch
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
+
from typing import Dict, Any
|
7 |
|
8 |
+
# Inisialisasi aplikasi FastAPI
|
9 |
+
app = FastAPI(
|
10 |
+
title="Lyon28 Model Inference API",
|
11 |
+
description="API untuk mengakses 11 model machine learning",
|
12 |
+
version="1.0.0"
|
13 |
+
)
|
14 |
|
15 |
+
# Konfigurasi CORS untuk frontend eksternal
|
16 |
app.add_middleware(
|
17 |
CORSMiddleware,
|
18 |
allow_origins=["*"],
|
19 |
+
allow_credentials=True,
|
20 |
allow_methods=["*"],
|
21 |
allow_headers=["*"],
|
22 |
)
|
23 |
|
24 |
+
# Konfigurasi Model
|
25 |
MODEL_MAP = {
|
26 |
"tinny-llama": "Lyon28/Tinny-Llama",
|
27 |
"pythia": "Lyon28/Pythia",
|
|
|
46 |
text: str
|
47 |
max_length: int = 100
|
48 |
temperature: float = 0.9
|
49 |
+
top_p: float = 0.95
|
50 |
|
51 |
+
# Helper functions
|
52 |
+
def get_task(model_id: str) -> str:
|
53 |
for task, models in TASK_MAP.items():
|
54 |
if model_id in models:
|
55 |
return task
|
56 |
return "text-generation"
|
57 |
|
58 |
+
# Event startup untuk inisialisasi model
|
59 |
@app.on_event("startup")
|
60 |
async def load_models():
|
|
|
61 |
app.state.pipelines = {}
|
62 |
+
print("🟢 Semua model siap digunakan!")
|
63 |
+
|
64 |
+
# Endpoint utama
|
65 |
+
@app.get("/")
|
66 |
+
async def root():
|
67 |
+
return {
|
68 |
+
"message": "Selamat datang di Lyon28 Model API",
|
69 |
+
"endpoints": {
|
70 |
+
"documentation": "/docs",
|
71 |
+
"model_list": "/models",
|
72 |
+
"health_check": "/health",
|
73 |
+
"inference": "/inference/{model_id}"
|
74 |
+
},
|
75 |
+
"total_models": len(MODEL_MAP)
|
76 |
+
}
|
77 |
+
|
78 |
+
# Endpoint untuk list model
|
79 |
+
@app.get("/models")
|
80 |
+
async def list_models():
|
81 |
+
return {
|
82 |
+
"available_models": list(MODEL_MAP.keys()),
|
83 |
+
"total_models": len(MODEL_MAP)
|
84 |
+
}
|
85 |
|
86 |
+
# Endpoint health check
|
87 |
+
@app.get("/health")
|
88 |
+
async def health_check():
|
89 |
+
return {
|
90 |
+
"status": "healthy",
|
91 |
+
"gpu_available": torch.cuda.is_available(),
|
92 |
+
"gpu_type": torch.cuda.get_device_name(0) if torch.cuda.is_available() else "CPU-only"
|
93 |
+
}
|
94 |
+
|
95 |
+
# Endpoint inference utama
|
96 |
@app.post("/inference/{model_id}")
|
97 |
async def model_inference(model_id: str, request: InferenceRequest):
|
98 |
try:
|
99 |
+
# Validasi model ID
|
100 |
if model_id not in MODEL_MAP:
|
101 |
+
raise HTTPException(
|
102 |
+
status_code=404,
|
103 |
+
detail=f"Model {model_id} tidak ditemukan. Cek /models untuk list model yang tersedia."
|
104 |
+
)
|
105 |
|
106 |
+
# Dapatkan task yang sesuai
|
107 |
task = get_task(model_id)
|
108 |
|
109 |
+
# Load model jika belum ada di memory
|
110 |
if model_id not in app.state.pipelines:
|
111 |
app.state.pipelines[model_id] = pipeline(
|
112 |
task=task,
|
113 |
model=MODEL_MAP[model_id],
|
114 |
+
device=0 if torch.cuda.is_available() else -1,
|
115 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
116 |
)
|
117 |
+
print(f"✅ Model {model_id} berhasil dimuat!")
|
118 |
|
119 |
pipe = app.state.pipelines[model_id]
|
120 |
|
121 |
+
# Proses berdasarkan task
|
122 |
if task == "text-generation":
|
123 |
result = pipe(
|
124 |
request.text,
|
125 |
max_length=request.max_length,
|
126 |
+
temperature=request.temperature,
|
127 |
+
top_p=request.top_p
|
128 |
)[0]['generated_text']
|
129 |
|
130 |
elif task == "text-classification":
|
|
|
135 |
}
|
136 |
|
137 |
elif task == "text2text-generation":
|
138 |
+
result = pipe(
|
139 |
+
request.text,
|
140 |
+
max_length=request.max_length
|
141 |
+
)[0]['generated_text']
|
142 |
|
143 |
return {"result": result}
|
144 |
|
145 |
except Exception as e:
|
146 |
+
raise HTTPException(
|
147 |
+
status_code=500,
|
148 |
+
detail=f"Error processing request: {str(e)}"
|
149 |
+
)
|
|
|
150 |
|
151 |
+
if __name__ == "__main__":
|
152 |
+
import uvicorn
|
153 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|