Lyon28's picture
Update app.py
7055a09 verified
raw
history blame
7.8 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import pipeline
import torch
from fastapi.middleware.cors import CORSMiddleware
from typing import Dict, Any, Optional
import os # Import os module
# Inisialisasi aplikasi FastAPI
app = FastAPI(
title="LyonPoy Model Inference API",
description="API untuk mengakses 11 model machine learning",
version="1.0.0"
)
# Konfigurasi CORS untuk frontend eksternal
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Konfigurasi Model
MODEL_MAP = {
"tinny-llama": "Lyon28/Tinny-Llama",
"pythia": "Lyon28/Pythia",
"bert-tinny": "Lyon28/Bert-Tinny",
"albert-base-v2": "Lyon28/Albert-Base-V2",
"t5-small": "Lyon28/T5-Small",
"gpt-2": "Lyon28/GPT-2",
"gpt-neo": "Lyon28/GPT-Neo",
"distilbert-base-uncased": "Lyon28/Distilbert-Base-Uncased",
"distil-gpt-2": "Lyon28/Distil_GPT-2",
"gpt-2-tinny": "Lyon28/GPT-2-Tinny",
"electra-small": "Lyon28/Electra-Small"
}
TASK_MAP = {
"text-generation": ["gpt-2", "gpt-neo", "distil-gpt-2", "gpt-2-tinny", "tinny-llama", "pythia"],
"text-classification": ["bert-tinny", "albert-base-v2", "distilbert-base-uncased", "electra-small"],
"text2text-generation": ["t5-small"]
}
class InferenceRequest(BaseModel):
text: str
model_id: Optional[str] = "gpt-2" # Default model
max_length: int = 100
temperature: float = 0.9
top_p: float = 0.95
# Helper functions
def get_task(model_id: str) -> str:
for task, models in TASK_MAP.items():
if model_id in models:
return task
# Default to text-generation if not found (or raise an error)
return "text-generation"
# Event startup untuk inisialisasi model
@app.on_event("startup")
async def load_models():
app.state.pipelines = {}
print("🟢 Semua model siap digunakan!")
# Menyetel HF_HOME untuk mengatasi masalah izin cache
os.environ['HF_HOME'] = '/tmp/.cache/huggingface'
os.makedirs(os.environ['HF_HOME'], exist_ok=True)
# Endpoint utama
@app.get("/")
async def root():
return {
"message": "Selamat datang di Lyon28 Model API",
"endpoints": {
"documentation": "/docs",
"model_list": "/models",
"health_check": "/health",
"inference_with_model": "/inference/{model_id}",
"inference_general": "/inference"
},
"total_models": len(MODEL_MAP),
"usage_examples": {
"specific_model": "POST /inference/gpt-2 with JSON body",
"general_inference": "POST /inference with model_id in JSON body"
}
}
# Endpoint untuk list model
@app.get("/models")
async def list_models():
return {
"available_models": list(MODEL_MAP.keys()),
"total_models": len(MODEL_MAP)
}
# Endpoint health check
@app.get("/health")
async def health_check():
return {
"status": "healthy",
"gpu_available": torch.cuda.is_available(),
"gpu_type": torch.cuda.get_device_name(0) if torch.cuda.is_available() else "CPU-only"
}
# NEW: General inference endpoint (handles POST /inference)
@app.post("/inference")
async def general_inference(request: InferenceRequest):
"""
General inference endpoint that accepts model_id in the request body
"""
return await process_inference(request.model_id, request)
# Endpoint inference dengan model_id di path
@app.post("/inference/{model_id}")
async def model_inference(model_id: str, request: InferenceRequest):
"""
Specific model inference endpoint with model_id in path
"""
return await process_inference(model_id, request)
# Shared inference processing function
async def process_inference(model_id: str, request: InferenceRequest):
try:
# Pastikan model_id dalam lowercase agar sesuai dengan MODEL_MAP
model_id = model_id.lower()
# Validasi model ID
if model_id not in MODEL_MAP:
available_models = ", ".join(MODEL_MAP.keys())
raise HTTPException(
status_code=404,
detail=f"Model '{model_id}' tidak ditemukan. Model yang tersedia: {available_models}"
)
# Dapatkan task yang sesuai
task = get_task(model_id)
# Load model jika belum ada di memory
if model_id not in app.state.pipelines:
print(f"⏳ Memuat model {model_id} untuk task {task}...")
# Menggunakan device=-1 (CPU) sebagai default yang aman
# Jika Anda yakin Hugging Face Space Anda memiliki GPU, gunakan device=0
device_to_use = 0 if torch.cuda.is_available() else -1
# Menyesuaikan dtype berdasarkan device
dtype_to_use = torch.float16 if torch.cuda.is_available() else torch.float32
try:
app.state.pipelines[model_id] = pipeline(
task=task,
model=MODEL_MAP[model_id],
device=device_to_use,
torch_dtype=dtype_to_use
)
print(f"✅ Model {model_id} berhasil dimuat!")
except Exception as load_error:
print(f"❌ Gagal memuat model {model_id}: {load_error}")
raise HTTPException(
status_code=503,
detail=f"Gagal memuat model {model_id}. Coba lagi nanti."
)
pipe = app.state.pipelines[model_id]
# Proses berdasarkan task
if task == "text-generation":
result = pipe(
request.text,
max_length=request.max_length,
temperature=request.temperature,
top_p=request.top_p,
do_sample=True
)[0]['generated_text']
elif task == "text-classification":
# Untuk text-classification, output adalah list of dict, kita ambil yang pertama
output = pipe(request.text)[0]
result = {
"label": output['label'],
"confidence": round(output['score'], 4)
}
elif task == "text2text-generation":
# Untuk text2text-generation, output juga list of dict
result = pipe(
request.text,
max_length=request.max_length
)[0]['generated_text']
else:
# Fallback untuk task yang tidak terduga, meski harusnya terhandle oleh get_task
raise HTTPException(
status_code=500,
detail=f"Tugas ({task}) untuk model {model_id} tidak didukung atau tidak dikenali."
)
return {
"result": result,
"model_used": model_id,
"task": task,
"status": "success"
}
except HTTPException as he:
# Re-raise HTTP exceptions
raise he
except Exception as e:
# Log error lebih detail untuk debugging
print(f"‼️ Error saat memproses model {model_id}: {e}")
import traceback
traceback.print_exc() # Mencetak full traceback ke log
raise HTTPException(
status_code=500,
detail=f"Error processing request: {str(e)}. Cek log server untuk detail."
)
# Error handler untuk 404
@app.exception_handler(404)
async def not_found_handler(request, exc):
return {
"error": "Endpoint tidak ditemukan",
"available_endpoints": [
"GET /",
"GET /models",
"GET /health",
"POST /inference",
"POST /inference/{model_id}"
],
"tip": "Gunakan /docs untuk dokumentasi lengkap"
}