File size: 6,637 Bytes
6dfbc1e
02a2d80
 
d3311ac
eac86d2
8a8d9dd
 
 
 
 
0189c6f
8dfc9e7
597f25d
 
 
 
cdbe11c
6dfbc1e
8a8d9dd
 
eac86d2
597f25d
eac86d2
 
2a0ad25
8a8d9dd
8a2dda5
 
 
 
 
 
 
 
 
 
8a8d9dd
 
 
8a2dda5
8a8d9dd
 
 
8a2dda5
8a8d9dd
 
 
 
 
 
 
 
 
 
 
8a2dda5
 
 
 
 
 
2a0ad25
8a2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a8d9dd
2a0ad25
8a8d9dd
8a2dda5
eac86d2
 
8a8d9dd
6e6b1e1
 
 
 
ffdd46f
 
 
 
597f25d
f408c43
597f25d
d71c024
8e71560
 
f408c43
 
 
 
 
 
2a0ad25
 
 
f408c43
2a0ad25
d71c024
f408c43
 
597f25d
 
9153fe9
 
03d1abd
597f25d
03d1abd
 
 
 
 
 
597f25d
8a8d9dd
02a2d80
 
 
 
 
 
6dfbc1e
80d2c6b
 
 
02a2d80
6dfbc1e
8a8d9dd
02a2d80
 
 
 
 
 
597f25d
02a2d80
 
21dbe18
 
 
6dfbc1e
8a8d9dd
 
02a2d80
21dbe18
 
 
 
6dfbc1e
21dbe18
 
02a2d80
21dbe18
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import time
import streamlit as st
from langchain.chat_models import ChatOpenAI
from transformers import AutoTokenizer, AutoModel
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document as LangchainDocument
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
import torch
from langchain_core.retrievers import BaseRetriever
from langchain_core.documents import Document
from typing import List
from pydantic import Field
from groq import Groq

# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="چت‌بات ارتش - فقط از PDF", page_icon="🪖", layout="wide")

# ----------------- بارگذاری مدل FarsiBERT -----------------
model_name = "HooshvareLab/bert-fa-zwnj-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)

# ----------------- لود PDF و ساخت ایندکس -----------------
import os
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModel
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document as LangchainDocument
from sentence_transformers import SentenceTransformer
import numpy as np

@st.cache_resource
def build_pdf_index():
    with st.spinner('📄 در حال پردازش فایل PDF...'):
        # بارگذاری فایل
        loader = PyPDFLoader("test1.pdf")
        pages = loader.load()

        # تکه‌تکه کردن متن
        splitter = RecursiveCharacterTextSplitter(
            chunk_size=500,
            chunk_overlap=50
        )

        texts = []
        for page in pages:
            texts.extend(splitter.split_text(page.page_content))

        documents = [LangchainDocument(page_content=t) for t in texts]

        # مدل‌های Embedding
        tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-fa-zwnj-base")
        bert_model = AutoModel.from_pretrained("HooshvareLab/bert-fa-zwnj-base")

        sentence_model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')

        embeddings = []
        batch_size = 16

        for i in range(0, len(documents), batch_size):
            batch_docs = documents[i:i+batch_size]
            batch_texts = [doc.page_content for doc in batch_docs]

            # اول تلاش با مدل SentenceTransformer (خیلی سریعتره)
            try:
                batch_embeddings = sentence_model.encode(batch_texts, batch_size=batch_size, convert_to_numpy=True)
            except Exception as e:
                st.error(f"❌ خطا در SentenceTransformer: {e}")
                batch_embeddings = []

            # اگر موفق نبود، استفاده از BERT
            if batch_embeddings == []:
                inputs = tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True)
                with torch.no_grad():
                    outputs = bert_model(**inputs)
                batch_embeddings = outputs.last_hidden_state.mean(dim=1).cpu().numpy()

            embeddings.extend(batch_embeddings)

        # اطمینان که خروجی NumpyArray باشه
        embeddings = np.array(embeddings)

        return documents, embeddings


# ----------------- تعریف LLM از Groq -----------------
groq_api_key = "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"

from langchain.llms import HuggingFaceEndpoint
groq_api_key = os.environ.get("GROQ_API_KEY")

# به جای OpenAI اینو بذار:
llm = ChatOpenAI(
    base_url="https://api.together.xyz/v1",
    api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
    model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)

# ----------------- تعریف SimpleRetriever -----------------
class SimpleRetriever(BaseRetriever):
    documents: List[Document] = Field(...)
    embeddings: List = Field(...)

    def _get_relevant_documents(self, query: str) -> List[Document]:
        inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True)
        with torch.no_grad():
            outputs = model(**inputs)
        query_embedding = outputs.last_hidden_state.mean(dim=1).numpy()

        similarities = []
        for doc_embedding in self.embeddings:
            similarity = (query_embedding * doc_embedding).sum()
            similarities.append(similarity)

        ranked_docs = sorted(zip(similarities, self.documents), reverse=True)
        return [doc for _, doc in ranked_docs[:5]]

# ----------------- ساخت Index -----------------
documents, embeddings = build_pdf_index()
retriever = SimpleRetriever(documents=documents, embeddings=embeddings)

# ----------------- ساخت Chain -----------------
chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=retriever,
    chain_type="stuff",
    input_key="question"
)

# ----------------- استیت برای چت -----------------
if 'messages' not in st.session_state:
    st.session_state.messages = []

if 'pending_prompt' not in st.session_state:
    st.session_state.pending_prompt = None

# ----------------- نمایش پیام‌های قبلی -----------------
for msg in st.session_state.messages:
    with st.chat_message(msg['role']):
        st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)

# ----------------- ورودی چت -----------------
prompt = st.chat_input("سوالی در مورد فایل بپرس...")

if prompt:
    st.session_state.messages.append({'role': 'user', 'content': prompt})
    st.session_state.pending_prompt = prompt
    st.rerun()

# ----------------- پاسخ مدل -----------------
if st.session_state.pending_prompt:
    with st.chat_message('ai'):
        # اضافه کردن پروگرس بار
        progress_bar = st.progress(0, text="در حال پردازش...")
        
        try:
            response = chain.run(f"سوال: {st.session_state.pending_prompt}")
            answer = response.strip()

            # شبیه سازی پردازش برای به روز کردن پروگرس بار
            for i in range(0, 101, 20):
                progress_bar.progress(i)
                time.sleep(0.1)  # شبیه سازی سرعت پردازش

        except Exception as e:
            answer = f"خطا در پاسخ‌دهی: {str(e)}"

        progress_bar.progress(100)  # کامل شدن پروگرس بار
        
        st.session_state.messages.append({'role': 'ai', 'content': answer})