File size: 6,637 Bytes
6dfbc1e 02a2d80 d3311ac eac86d2 8a8d9dd 0189c6f 8dfc9e7 597f25d cdbe11c 6dfbc1e 8a8d9dd eac86d2 597f25d eac86d2 2a0ad25 8a8d9dd 8a2dda5 8a8d9dd 8a2dda5 8a8d9dd 8a2dda5 8a8d9dd 8a2dda5 2a0ad25 8a2dda5 8a8d9dd 2a0ad25 8a8d9dd 8a2dda5 eac86d2 8a8d9dd 6e6b1e1 ffdd46f 597f25d f408c43 597f25d d71c024 8e71560 f408c43 2a0ad25 f408c43 2a0ad25 d71c024 f408c43 597f25d 9153fe9 03d1abd 597f25d 03d1abd 597f25d 8a8d9dd 02a2d80 6dfbc1e 80d2c6b 02a2d80 6dfbc1e 8a8d9dd 02a2d80 597f25d 02a2d80 21dbe18 6dfbc1e 8a8d9dd 02a2d80 21dbe18 6dfbc1e 21dbe18 02a2d80 21dbe18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import os
import time
import streamlit as st
from langchain.chat_models import ChatOpenAI
from transformers import AutoTokenizer, AutoModel
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document as LangchainDocument
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
import torch
from langchain_core.retrievers import BaseRetriever
from langchain_core.documents import Document
from typing import List
from pydantic import Field
from groq import Groq
# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="چتبات ارتش - فقط از PDF", page_icon="🪖", layout="wide")
# ----------------- بارگذاری مدل FarsiBERT -----------------
model_name = "HooshvareLab/bert-fa-zwnj-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# ----------------- لود PDF و ساخت ایندکس -----------------
import os
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModel
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document as LangchainDocument
from sentence_transformers import SentenceTransformer
import numpy as np
@st.cache_resource
def build_pdf_index():
with st.spinner('📄 در حال پردازش فایل PDF...'):
# بارگذاری فایل
loader = PyPDFLoader("test1.pdf")
pages = loader.load()
# تکهتکه کردن متن
splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50
)
texts = []
for page in pages:
texts.extend(splitter.split_text(page.page_content))
documents = [LangchainDocument(page_content=t) for t in texts]
# مدلهای Embedding
tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-fa-zwnj-base")
bert_model = AutoModel.from_pretrained("HooshvareLab/bert-fa-zwnj-base")
sentence_model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
embeddings = []
batch_size = 16
for i in range(0, len(documents), batch_size):
batch_docs = documents[i:i+batch_size]
batch_texts = [doc.page_content for doc in batch_docs]
# اول تلاش با مدل SentenceTransformer (خیلی سریعتره)
try:
batch_embeddings = sentence_model.encode(batch_texts, batch_size=batch_size, convert_to_numpy=True)
except Exception as e:
st.error(f"❌ خطا در SentenceTransformer: {e}")
batch_embeddings = []
# اگر موفق نبود، استفاده از BERT
if batch_embeddings == []:
inputs = tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = bert_model(**inputs)
batch_embeddings = outputs.last_hidden_state.mean(dim=1).cpu().numpy()
embeddings.extend(batch_embeddings)
# اطمینان که خروجی NumpyArray باشه
embeddings = np.array(embeddings)
return documents, embeddings
# ----------------- تعریف LLM از Groq -----------------
groq_api_key = "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"
from langchain.llms import HuggingFaceEndpoint
groq_api_key = os.environ.get("GROQ_API_KEY")
# به جای OpenAI اینو بذار:
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)
# ----------------- تعریف SimpleRetriever -----------------
class SimpleRetriever(BaseRetriever):
documents: List[Document] = Field(...)
embeddings: List = Field(...)
def _get_relevant_documents(self, query: str) -> List[Document]:
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
query_embedding = outputs.last_hidden_state.mean(dim=1).numpy()
similarities = []
for doc_embedding in self.embeddings:
similarity = (query_embedding * doc_embedding).sum()
similarities.append(similarity)
ranked_docs = sorted(zip(similarities, self.documents), reverse=True)
return [doc for _, doc in ranked_docs[:5]]
# ----------------- ساخت Index -----------------
documents, embeddings = build_pdf_index()
retriever = SimpleRetriever(documents=documents, embeddings=embeddings)
# ----------------- ساخت Chain -----------------
chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="stuff",
input_key="question"
)
# ----------------- استیت برای چت -----------------
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'pending_prompt' not in st.session_state:
st.session_state.pending_prompt = None
# ----------------- نمایش پیامهای قبلی -----------------
for msg in st.session_state.messages:
with st.chat_message(msg['role']):
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
# ----------------- ورودی چت -----------------
prompt = st.chat_input("سوالی در مورد فایل بپرس...")
if prompt:
st.session_state.messages.append({'role': 'user', 'content': prompt})
st.session_state.pending_prompt = prompt
st.rerun()
# ----------------- پاسخ مدل -----------------
if st.session_state.pending_prompt:
with st.chat_message('ai'):
# اضافه کردن پروگرس بار
progress_bar = st.progress(0, text="در حال پردازش...")
try:
response = chain.run(f"سوال: {st.session_state.pending_prompt}")
answer = response.strip()
# شبیه سازی پردازش برای به روز کردن پروگرس بار
for i in range(0, 101, 20):
progress_bar.progress(i)
time.sleep(0.1) # شبیه سازی سرعت پردازش
except Exception as e:
answer = f"خطا در پاسخدهی: {str(e)}"
progress_bar.progress(100) # کامل شدن پروگرس بار
st.session_state.messages.append({'role': 'ai', 'content': answer})
|