File size: 5,458 Bytes
6dfbc1e 02a2d80 d3311ac 26608f4 eac86d2 8a8d9dd 0189c6f 8dfc9e7 597f25d 26608f4 cdbe11c 6dfbc1e 8a8d9dd eac86d2 26608f4 2a0ad25 8a8d9dd 8a2dda5 8a8d9dd 548b3b7 8a8d9dd 8a2dda5 5597954 26608f4 8a2dda5 e5ae991 8a2dda5 548b3b7 e5ae991 5597954 8a2dda5 8a8d9dd 2a0ad25 8a8d9dd eac86d2 26608f4 6e6b1e1 ffdd46f 597f25d f408c43 597f25d d71c024 8e71560 f408c43 26608f4 2a0ad25 f408c43 2a0ad25 d71c024 548b3b7 f408c43 597f25d 9153fe9 03d1abd 597f25d 03d1abd 597f25d 8a8d9dd 02a2d80 6dfbc1e 80d2c6b 02a2d80 6dfbc1e 8a8d9dd 02a2d80 597f25d 02a2d80 26608f4 548b3b7 26608f4 6dfbc1e 8a8d9dd 21dbe18 02a2d80 26608f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import os
import time
import streamlit as st
from langchain.chat_models import ChatOpenAI
from transformers import AutoTokenizer, AutoModel
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document as LangchainDocument
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
import torch
from langchain_core.retrievers import BaseRetriever
from langchain_core.documents import Document
from typing import List
from pydantic import Field
from sentence_transformers import SentenceTransformer
import numpy as np
# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="چتبات ارتش - فقط از PDF", page_icon="🪖", layout="wide")
# ----------------- بارگذاری مدل FarsiBERT -----------------
# model_name = "HooshvareLab/bert-fa-zwnj-base"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModel.from_pretrained(model_name)
# ----------------- لود PDF و ساخت ایندکس -----------------
@st.cache_resource
def build_pdf_index():
with st.spinner('📄 در حال پردازش فایل ...'):
loader = PyPDFLoader("test1.pdf")
pages = loader.load()
splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50
)
texts = []
for page in pages:
texts.extend(splitter.split_text(page.page_content))
documents = [LangchainDocument(page_content=t) for t in texts]
sentence_model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
progress_bar = st.progress(0)
total_docs = len(documents)
texts_to_encode = [doc.page_content for doc in documents]
batch_size = 128
embeddings = []
for i in range(0, total_docs, batch_size):
batch_texts = texts_to_encode[i:i+batch_size]
batch_embeddings = sentence_model.encode(batch_texts, convert_to_numpy=True)
embeddings.extend(batch_embeddings)
progress_bar.progress(min((i + batch_size) / total_docs, 1.0))
embeddings = np.array(embeddings)
return documents, embeddings
# ----------------- تعریف LLM از Groq -----------------
# groq_api_key = "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"
# به جای OpenAI اینو بذار:
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)
# ----------------- تعریف SimpleRetriever -----------------
class SimpleRetriever(BaseRetriever):
documents: List[Document] = Field(...)
embeddings: List = Field(...)
def _get_relevant_documents(self, query: str) -> List[Document]:
# فقط از sentence_model استفاده میکنیم
sentence_model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
query_embedding = sentence_model.encode(query, convert_to_numpy=True)
similarities = []
for doc_embedding in self.embeddings:
similarity = (query_embedding * doc_embedding).sum()
similarities.append(similarity)
ranked_docs = sorted(
zip(similarities, self.documents),
key=lambda x: x[0],
reverse=True
)
return [doc for _, doc in ranked_docs[:5]]
# ----------------- ساخت Index -----------------
documents, embeddings = build_pdf_index()
retriever = SimpleRetriever(documents=documents, embeddings=embeddings)
# ----------------- ساخت Chain -----------------
chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="stuff",
input_key="question"
)
# ----------------- استیت برای چت -----------------
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'pending_prompt' not in st.session_state:
st.session_state.pending_prompt = None
# ----------------- نمایش پیامهای قبلی -----------------
for msg in st.session_state.messages:
with st.chat_message(msg['role']):
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
# ----------------- ورودی چت -----------------
prompt = st.chat_input("سوالی در مورد فایل بپرس...")
if prompt:
st.session_state.messages.append({'role': 'user', 'content': prompt})
st.session_state.pending_prompt = prompt
st.rerun()
# ----------------- پاسخ مدل -----------------
if st.session_state.pending_prompt:
with st.chat_message('ai'):
thinking = st.empty()
thinking.markdown("🤖 در حال فکر کردن ...")
try:
response = chain.run(f"سوال: {st.session_state.pending_prompt}")
answer = response.strip()
except Exception as e:
answer = f"خطا در پاسخدهی: {str(e)}"
thinking.empty()
full_response = ""
placeholder = st.empty()
for word in answer.split():
full_response += word + " "
placeholder.markdown(full_response + "▌")
time.sleep(0.03)
placeholder.markdown(full_response)
st.session_state.messages.append({'role': 'ai', 'content': full_response})
st.session_state.pending_prompt = None
|