File size: 7,705 Bytes
6dfbc1e 02a2d80 d3311ac 8a8d9dd 0189c6f 8dfc9e7 597f25d 26608f4 cdbe11c 6dfbc1e 6631b7b 8a8d9dd eac86d2 26608f4 2a0ad25 8a8d9dd 8a2dda5 8a8d9dd 548b3b7 8a8d9dd 0c4ad43 8a2dda5 5597954 26608f4 8a2dda5 e5ae991 8a2dda5 548b3b7 e5ae991 5597954 af2b6fa 8a2dda5 8a8d9dd 2a0ad25 8a8d9dd eac86d2 26608f4 6e6b1e1 ffdd46f 597f25d f408c43 597f25d d71c024 8e71560 e7019aa f408c43 e7019aa 0c4ad43 26608f4 2a0ad25 e7019aa d71c024 e7019aa 597f25d 9153fe9 03d1abd 597f25d 03d1abd 597f25d 8a8d9dd 02a2d80 6dfbc1e 80d2c6b 02a2d80 6dfbc1e 8a8d9dd 02a2d80 597f25d 02a2d80 26608f4 548b3b7 26608f4 6dfbc1e 8a8d9dd 21dbe18 02a2d80 26608f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import os
import time
import streamlit as st
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document as LangchainDocument
from langchain.chains import RetrievalQA
import torch
from langchain_core.retrievers import BaseRetriever
from langchain_core.documents import Document
from typing import List
from pydantic import Field
from sentence_transformers import SentenceTransformer
import numpy as np
# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="چت بات توانا", page_icon="🪖", layout="wide")
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
html, body, [class*="css"] {
font-family: 'Vazirmatn', Tahoma, sans-serif;
direction: rtl;
text-align: right;
}
.stApp {
background: url("./military_bg.jpeg") no-repeat center center fixed;
background-size: cover;
backdrop-filter: blur(2px);
}
.stChatMessage {
background-color: rgba(255,255,255,0.8);
border: 1px solid #4e8a3e;
border-radius: 12px;
padding: 16px;
margin-bottom: 15px;
box-shadow: 0 4px 10px rgba(0,0,0,0.2);
animation: fadeIn 0.4s ease-in-out;
}
.stTextInput > div > input, .stTextArea textarea {
background-color: rgba(255,255,255,0.9) !important;
border-radius: 8px !important;
direction: rtl;
text-align: right;
font-family: 'Vazirmatn', Tahoma;
}
.stButton>button {
background-color: #4e8a3e !important;
color: white !important;
font-weight: bold;
border-radius: 10px;
padding: 8px 20px;
transition: 0.3s;
}
.stButton>button:hover {
background-color: #3c6d30 !important;
}
.header-text {
text-align: center;
margin-top: 20px;
margin-bottom: 40px;
background-color: rgba(255, 255, 255, 0.75);
padding: 20px;
border-radius: 20px;
box-shadow: 0 4px 12px rgba(0,0,0,0.2);
}
.header-text h1 {
font-size: 42px;
color: #2c3e50;
margin: 0;
font-weight: bold;
}
.subtitle {
font-size: 18px;
color: #34495e;
margin-top: 8px;
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(10px); }
to { opacity: 1; transform: translateY(0); }
}
</style>
""", unsafe_allow_html=True)
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
st.image("army.png", width=240)
st.markdown("""
<div class="header-text">
<h1>چت بات توانا</h1>
<div class="subtitle">دستیار هوشمند برای تصمیمگیری در میدان نبرد</div>
</div>
""", unsafe_allow_html=True)
# ----------------- بارگذاری مدل FarsiBERT -----------------
# model_name = "HooshvareLab/bert-fa-zwnj-base"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModel.from_pretrained(model_name)
# ----------------- لود PDF و ساخت ایندکس -----------------
@st.cache_resource
def build_pdf_index():
with st.spinner('📄 در حال پردازش فایل ...'):
loader = PyPDFLoader("test1.pdf")
pages = loader.load()
splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50
)
texts = []
for page in pages:
texts.extend(splitter.split_text(page.page_content))
documents = [LangchainDocument(page_content=t) for t in texts]
sentence_model = SentenceTransformer("aubmindlab/bert-base-arabert")
progress_bar = st.progress(0)
total_docs = len(documents)
texts_to_encode = [doc.page_content for doc in documents]
batch_size = 128
embeddings = []
for i in range(0, total_docs, batch_size):
batch_texts = texts_to_encode[i:i+batch_size]
batch_embeddings = sentence_model.encode(batch_texts, convert_to_numpy=True)
embeddings.extend(batch_embeddings)
progress_bar.progress(min((i + batch_size) / total_docs, 1.0))
time.sleep(5)
progress_bar.empty()
embeddings = np.array(embeddings)
return documents, embeddings
# ----------------- تعریف LLM از Groq -----------------
# groq_api_key = "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"
# به جای OpenAI اینو بذار:
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)
# ----------------- تعریف SimpleRetriever -----------------
class SimpleRetriever(BaseRetriever):
documents: List[Document] = Field(...)
embeddings: List[np.ndarray] = Field(...)
def _get_relevant_documents(self, query: str) -> List[Document]:
# استفاده از sentence_model برای تبدیل query به بردار
sentence_model = SentenceTransformer("aubmindlab/bert-base-arabert")
query_embedding = sentence_model.encode(query, convert_to_numpy=True)
# محاسبه شباهتهای برداری برای تمام اسناد
similarities = np.dot(self.embeddings, query_embedding)
# ترتیبدهی اسناد بر اساس شباهتها
ranked_docs = np.argsort(similarities)[::-1]
# برگشتن به ۵ سند برتر
return [self.documents[i] for i in ranked_docs[:5]]
# ----------------- ساخت Index -----------------
documents, embeddings = build_pdf_index()
retriever = SimpleRetriever(documents=documents, embeddings=embeddings)
# ----------------- ساخت Chain -----------------
chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="stuff",
input_key="question"
)
# ----------------- استیت برای چت -----------------
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'pending_prompt' not in st.session_state:
st.session_state.pending_prompt = None
# ----------------- نمایش پیامهای قبلی -----------------
for msg in st.session_state.messages:
with st.chat_message(msg['role']):
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
# ----------------- ورودی چت -----------------
prompt = st.chat_input("سوالی در مورد فایل بپرس...")
if prompt:
st.session_state.messages.append({'role': 'user', 'content': prompt})
st.session_state.pending_prompt = prompt
st.rerun()
# ----------------- پاسخ مدل -----------------
if st.session_state.pending_prompt:
with st.chat_message('ai'):
thinking = st.empty()
thinking.markdown("🤖 در حال فکر کردن ...")
try:
response = chain.run(f"سوال: {st.session_state.pending_prompt}")
answer = response.strip()
except Exception as e:
answer = f"خطا در پاسخدهی: {str(e)}"
thinking.empty()
full_response = ""
placeholder = st.empty()
for word in answer.split():
full_response += word + " "
placeholder.markdown(full_response + "▌")
time.sleep(0.03)
placeholder.markdown(full_response)
st.session_state.messages.append({'role': 'ai', 'content': full_response})
st.session_state.pending_prompt = None
|