Update app.py
Browse files
app.py
CHANGED
|
@@ -85,7 +85,7 @@ st.markdown("""
|
|
| 85 |
</style>
|
| 86 |
""", unsafe_allow_html=True)
|
| 87 |
|
| 88 |
-
col1, col2, col3 = st.columns([1,
|
| 89 |
with col2:
|
| 90 |
st.image("army.png", width=240)
|
| 91 |
|
|
@@ -136,9 +136,8 @@ def build_pdf_index():
|
|
| 136 |
progress_bar.empty()
|
| 137 |
embeddings = np.array(embeddings)
|
| 138 |
|
| 139 |
-
|
| 140 |
-
index
|
| 141 |
-
index.add(embeddings) # اضافه کردن بردارها به ایندکس FAISS
|
| 142 |
|
| 143 |
return documents, embeddings, index
|
| 144 |
|
|
@@ -156,14 +155,11 @@ class SimpleRetriever(BaseRetriever):
|
|
| 156 |
index: faiss.Index
|
| 157 |
|
| 158 |
def _get_relevant_documents(self, query: str) -> List[Document]:
|
| 159 |
-
# تبدیل پرسش به بردار
|
| 160 |
sentence_model = SentenceTransformer('HooshvareLab/bert-fa-zwnj-base')
|
| 161 |
query_embedding = sentence_model.encode(query, convert_to_numpy=True)
|
| 162 |
|
| 163 |
-
# جستجو در ایندکس FAISS
|
| 164 |
_, indices = self.index.search(np.expand_dims(query_embedding, axis=0), 5) # پیدا کردن 5 سند مشابه
|
| 165 |
|
| 166 |
-
# بازگشت به 5 سند مرتبطترین
|
| 167 |
return [self.documents[i] for i in indices[0]]
|
| 168 |
|
| 169 |
# ----------------- ساخت Index -----------------
|
|
|
|
| 85 |
</style>
|
| 86 |
""", unsafe_allow_html=True)
|
| 87 |
|
| 88 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
| 89 |
with col2:
|
| 90 |
st.image("army.png", width=240)
|
| 91 |
|
|
|
|
| 136 |
progress_bar.empty()
|
| 137 |
embeddings = np.array(embeddings)
|
| 138 |
|
| 139 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
| 140 |
+
index.add(embeddings)
|
|
|
|
| 141 |
|
| 142 |
return documents, embeddings, index
|
| 143 |
|
|
|
|
| 155 |
index: faiss.Index
|
| 156 |
|
| 157 |
def _get_relevant_documents(self, query: str) -> List[Document]:
|
|
|
|
| 158 |
sentence_model = SentenceTransformer('HooshvareLab/bert-fa-zwnj-base')
|
| 159 |
query_embedding = sentence_model.encode(query, convert_to_numpy=True)
|
| 160 |
|
|
|
|
| 161 |
_, indices = self.index.search(np.expand_dims(query_embedding, axis=0), 5) # پیدا کردن 5 سند مشابه
|
| 162 |
|
|
|
|
| 163 |
return [self.documents[i] for i in indices[0]]
|
| 164 |
|
| 165 |
# ----------------- ساخت Index -----------------
|