File size: 4,881 Bytes
49b1ef8 71f5043 132a2dd b0d6a30 49b1ef8 b0d6a30 132a2dd a37c9c1 132a2dd b0d6a30 ef20835 b0d6a30 349bcd6 132a2dd 349bcd6 b0d6a30 132a2dd 349bcd6 b0d6a30 49b1ef8 b0d6a30 132a2dd b0d6a30 132a2dd 49b1ef8 b0d6a30 132a2dd 49b1ef8 b0d6a30 132a2dd 49b1ef8 132a2dd b0d6a30 132a2dd b0d6a30 132a2dd b0d6a30 49b1ef8 b0d6a30 71f5043 132a2dd 71f5043 b0d6a30 132a2dd 49b1ef8 b0d6a30 132a2dd d8eac00 49b1ef8 b0d6a30 d8eac00 49b1ef8 132a2dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import gradio as gr
import os
import json
import uuid
import torch
import datetime
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel, AutoConfig
from huggingface_hub import HfApi, create_repo, hf_hub_download
from torchcrf import CRF
# Constants
HF_DATASET_REPO = "M2ai/mgtd-logs"
HF_TOKEN = os.getenv("Mgtd")
DATASET_CREATED = False
# Model identifiers
code = "ENG"
pntr = 2
model_name_or_path = "microsoft/mdeberta-v3-base"
hf_token = os.environ.get("Mgtd") # Set this before running
# Download model checkpoint
file_path = hf_hub_download(
repo_id="1024m/MGTD-Long-New",
filename=f"{code}/mdeberta-epoch-{pntr}.pt",
token=hf_token,
local_dir="./checkpoints"
)
# Define CRF model
class AutoModelCRF(nn.Module):
def __init__(self, model_name_or_path, dropout=0.075):
super().__init__()
self.config = AutoConfig.from_pretrained(model_name_or_path)
self.num_labels = 2
self.encoder = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True, config=self.config)
self.dropout = nn.Dropout(dropout)
self.linear = nn.Linear(self.config.hidden_size, self.num_labels)
self.crf = CRF(self.num_labels, batch_first=True)
def forward(self, input_ids, attention_mask):
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
seq_output = self.dropout(outputs[0])
emissions = self.linear(seq_output)
tags = self.crf.decode(emissions, attention_mask.byte())
return tags, emissions
# Load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelCRF(model_name_or_path)
checkpoint = torch.load(file_path, map_location="cpu")
model.load_state_dict(checkpoint.get("model_state_dict", checkpoint), strict=False)
model = model.to(device)
model.eval()
# Inference function
def get_word_classifications(text):
text = " ".join(text.split(" ")[:2048])
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
with torch.no_grad():
tags, _ = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
word_tags = []
current_word = ""
current_tag = None
for token, tag in zip(tokens, tags[0]):
if token in ["<s>", "</s>"]:
continue
if token.startswith("▁"):
if current_word:
word_tags.append(str(current_tag))
current_word = token[1:] if token != "▁" else ""
current_tag = tag
else:
current_word += token
if current_word:
word_tags.append(str(current_tag))
return word_tags
# HF logging setup
def setup_hf_dataset():
global DATASET_CREATED
if not DATASET_CREATED and HF_TOKEN:
try:
create_repo(HF_DATASET_REPO, repo_type="dataset", token=HF_TOKEN, exist_ok=True)
DATASET_CREATED = True
print(f"Dataset {HF_DATASET_REPO} is ready.")
except Exception as e:
print(f"Error setting up dataset: {e}")
# Main inference + logging function
def infer_and_log(text_input):
word_tags = get_word_classifications(text_input)
timestamp = datetime.datetime.now().isoformat()
submission_id = str(uuid.uuid4())
log_data = {
"id": submission_id,
"timestamp": timestamp,
"input": text_input,
"output_tags": word_tags
}
os.makedirs("logs", exist_ok=True)
log_file = f"logs/{timestamp.replace(':', '_')}.json"
with open(log_file, "w") as f:
json.dump(log_data, f, indent=2)
if HF_TOKEN and DATASET_CREATED:
try:
HfApi().upload_file(
path_or_fileobj=log_file,
path_in_repo=f"logs/{os.path.basename(log_file)}",
repo_id=HF_DATASET_REPO,
repo_type="dataset",
token=HF_TOKEN
)
print(f"Uploaded log {submission_id}")
except Exception as e:
print(f"Error uploading log: {e}")
return " ".join(word_tags)
def clear_fields():
return "", ""
# Prepare dataset once
setup_hf_dataset()
# Gradio UI
with gr.Blocks() as app:
gr.Markdown("Machine Generated Text Detector")
with gr.Row():
input_box = gr.Textbox(label="Input Text", lines=10)
output_box = gr.Textbox(label="Output Tags", lines=10, interactive=False)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
submit_btn.click(fn=infer_and_log, inputs=input_box, outputs=output_box)
clear_btn.click(fn=clear_fields, outputs=[input_box, output_box])
if __name__ == "__main__":
app.launch()
|