MGTD-Demo / app.py
minemaster01's picture
Update app.py
784a955 verified
raw
history blame
7.69 kB
import gradio as gr
import os
import json
import uuid
import torch
import datetime
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel, AutoConfig
from huggingface_hub import HfApi, create_repo, hf_hub_download
from torchcrf import CRF
# Constants
HF_DATASET_REPO = "M2ai/mgtd-logs"
HF_TOKEN = os.getenv("Mgtd")
DATASET_CREATED = False
# Model identifiers
code = "ENG"
pntr = 2
model_name_or_path = "microsoft/mdeberta-v3-base"
hf_token = os.environ.get("Mgtd") # Set this before running
# Download model checkpoint
file_path = hf_hub_download(
repo_id="1024m/MGTD-Long-New",
filename=f"{code}/mdeberta-epoch-{pntr}.pt",
token=hf_token,
local_dir="./checkpoints"
)
# Define CRF model
class AutoModelCRF(nn.Module):
def __init__(self, model_name_or_path, dropout=0.075):
super().__init__()
self.config = AutoConfig.from_pretrained(model_name_or_path)
self.num_labels = 2
self.encoder = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True, config=self.config)
self.dropout = nn.Dropout(dropout)
self.linear = nn.Linear(self.config.hidden_size, self.num_labels)
self.crf = CRF(self.num_labels, batch_first=True)
def forward(self, input_ids, attention_mask):
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
seq_output = self.dropout(outputs[0])
emissions = self.linear(seq_output)
tags = self.crf.decode(emissions, attention_mask.byte())
return tags, emissions
# Load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelCRF(model_name_or_path)
checkpoint = torch.load(file_path, map_location="cpu")
model.load_state_dict(checkpoint.get("model_state_dict", checkpoint), strict=False)
model = model.to(device)
model.eval()
# Inference function
def get_word_probabilities(text):
text = " ".join(text.split(" ")[:2048])
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
with torch.no_grad():
tags, emission = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
probs = torch.softmax(emission, dim=-1)[0, :, 1].cpu().numpy()
word_probs = []
word_colors = []
current_word = ""
current_probs = []
for token, prob in zip(tokens, probs):
if token in ["<s>", "</s>"]:
continue
if token.startswith("▁"):
if current_word and current_probs:
current_prob = sum(current_probs) / len(current_probs)
word_probs.append(current_prob)
# Determine color based on probability
color = (
"green" if current_prob < 0.25 else
"yellow" if current_prob < 0.5 else
"orange" if current_prob < 0.75 else
"red"
)
word_colors.append(color)
current_word = token[1:] if token != "▁" else ""
current_probs = [prob]
else:
current_word += token
current_probs.append(prob)
if current_word and current_probs:
current_prob = sum(current_probs) / len(current_probs)
word_probs.append(current_prob)
# Determine color for the last word
color = (
"green" if current_prob < 0.25 else
"yellow" if current_prob < 0.5 else
"orange" if current_prob < 0.75 else
"red"
)
word_colors.append(color)
word_probs = [float(p) for p in word_probs]
return word_probs, word_colors
# def get_word_classifications(text):
# text = " ".join(text.split(" ")[:2048])
# inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
# inputs = {k: v.to(device) for k, v in inputs.items()}
# tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
# with torch.no_grad():
# tags, emissions = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
# word_tags = []
# color_output = []
# current_word = ""
# current_prob = 0.0
# for token, prob in zip(tokens, tags[0]):
# if token in ["<s>", "</s>"]:
# continue
# if token.startswith("▁"):
# if current_word:
# word_tags.append(round(current_prob, 3))
# color = (
# "green" if current_prob < 0.25 else
# "yellow" if current_prob < 0.5 else
# "orange" if current_prob < 0.75 else
# "red"
# )
# color_output.append(f'<span style="color:{color}">{current_word}</span>')
# current_word = token[1:] if token != "▁" else ""
# current_prob = prob
# else:
# current_word += token
# current_prob = max(current_prob, prob)
# if current_word:
# word_tags.append(round(current_prob, 3))
# color = (
# "green" if current_prob < 0.25 else
# "yellow" if current_prob < 0.5 else
# "orange" if current_prob < 0.75 else
# "red"
# )
# color_output.append(f'<span style="color:{color}">{current_word}</span>')
# output = " ".join(color_output)
# return output, word_tags
# HF logging setup
def setup_hf_dataset():
global DATASET_CREATED
if not DATASET_CREATED and HF_TOKEN:
try:
create_repo(HF_DATASET_REPO, repo_type="dataset", token=HF_TOKEN, exist_ok=True)
DATASET_CREATED = True
print(f"Dataset {HF_DATASET_REPO} is ready.")
except Exception as e:
print(f"Error setting up dataset: {e}")
# Main inference + logging function
def infer_and_log(text_input):
word_probs, word_colors = get_word_probabilities(text_input)
timestamp = datetime.datetime.now().isoformat()
submission_id = str(uuid.uuid4())
log_data = {
"id": submission_id,
"timestamp": timestamp,
"input": text_input,
"output_probs": word_probs
}
os.makedirs("logs", exist_ok=True)
log_file = f"logs/{timestamp.replace(':', '_')}.json"
with open(log_file, "w") as f:
json.dump(log_data, f, indent=2)
if HF_TOKEN and DATASET_CREATED:
try:
HfApi().upload_file(
path_or_fileobj=log_file,
path_in_repo=f"logs/{os.path.basename(log_file)}",
repo_id=HF_DATASET_REPO,
repo_type="dataset",
token=HF_TOKEN
)
print(f"Uploaded log {submission_id}")
except Exception as e:
print(f"Error uploading log: {e}")
return "".join(word_colors)
def clear_fields():
return "", ""
# Prepare dataset once
setup_hf_dataset()
# Gradio UI
with gr.Blocks() as app:
gr.Markdown("Machine Generated Text Detector")
with gr.Row():
input_box = gr.Textbox(label="Input Text", lines=10)
output_box = gr.Textbox(label="Output Text", lines=10, interactive=False)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
submit_btn.click(fn=infer_and_log, inputs=input_box, outputs=output_box)
clear_btn.click(fn=clear_fields, outputs=[input_box, output_box])
if __name__ == "__main__":
app.launch()