File size: 7,692 Bytes
49b1ef8
71f5043
132a2dd
 
 
 
b0d6a30
 
 
 
49b1ef8
b0d6a30
132a2dd
a37c9c1
132a2dd
 
b0d6a30
 
 
 
ef20835
b0d6a30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9abe45
03d2b1d
c9abe45
 
 
 
 
 
 
 
03d2b1d
c9abe45
03d2b1d
 
 
c9abe45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03d2b1d
c9abe45
2cc90de
03d2b1d
ec5bad4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5050833
ec5bad4
 
5050833
b0d6a30
 
349bcd6
 
 
 
132a2dd
349bcd6
b0d6a30
132a2dd
 
349bcd6
b0d6a30
49b1ef8
2cc90de
132a2dd
 
b0d6a30
132a2dd
 
 
49b1ef8
c9abe45
132a2dd
49b1ef8
b0d6a30
132a2dd
 
 
49b1ef8
132a2dd
 
b0d6a30
132a2dd
 
 
 
 
 
b0d6a30
132a2dd
b0d6a30
49b1ef8
784a955
71f5043
132a2dd
 
71f5043
b0d6a30
132a2dd
49b1ef8
b0d6a30
132a2dd
d8eac00
49b1ef8
 
b0d6a30
7d670e0
49b1ef8
 
 
 
5050833
 
49b1ef8
 
 
 
132a2dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gradio as gr
import os
import json
import uuid
import torch
import datetime
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel, AutoConfig
from huggingface_hub import HfApi, create_repo, hf_hub_download
from torchcrf import CRF

# Constants
HF_DATASET_REPO = "M2ai/mgtd-logs"
HF_TOKEN = os.getenv("Mgtd")
DATASET_CREATED = False

# Model identifiers
code = "ENG"
pntr = 2
model_name_or_path = "microsoft/mdeberta-v3-base"
hf_token = os.environ.get("Mgtd")  # Set this before running

# Download model checkpoint
file_path = hf_hub_download(
    repo_id="1024m/MGTD-Long-New",
    filename=f"{code}/mdeberta-epoch-{pntr}.pt",
    token=hf_token,
    local_dir="./checkpoints"
)

# Define CRF model
class AutoModelCRF(nn.Module):
    def __init__(self, model_name_or_path, dropout=0.075):
        super().__init__()
        self.config = AutoConfig.from_pretrained(model_name_or_path)
        self.num_labels = 2
        self.encoder = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True, config=self.config)
        self.dropout = nn.Dropout(dropout)
        self.linear = nn.Linear(self.config.hidden_size, self.num_labels)
        self.crf = CRF(self.num_labels, batch_first=True)

    def forward(self, input_ids, attention_mask):
        outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
        seq_output = self.dropout(outputs[0])
        emissions = self.linear(seq_output)
        tags = self.crf.decode(emissions, attention_mask.byte())
        return tags, emissions

# Load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelCRF(model_name_or_path)
checkpoint = torch.load(file_path, map_location="cpu")
model.load_state_dict(checkpoint.get("model_state_dict", checkpoint), strict=False)
model = model.to(device)
model.eval()

# Inference function
    
def get_word_probabilities(text):
    text = " ".join(text.split(" ")[:2048])
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
    inputs = {k: v.to(device) for k, v in inputs.items()}
    tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
    with torch.no_grad():
        tags, emission = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
    probs = torch.softmax(emission, dim=-1)[0, :, 1].cpu().numpy()
        
    word_probs = []
    word_colors = []
    current_word = ""
    current_probs = []

    for token, prob in zip(tokens, probs):
        if token in ["<s>", "</s>"]:
            continue
        if token.startswith("▁"):
            if current_word and current_probs:
                current_prob = sum(current_probs) / len(current_probs)
                word_probs.append(current_prob)
                
                # Determine color based on probability
                color = (
                    "green" if current_prob < 0.25 else
                    "yellow" if current_prob < 0.5 else
                    "orange" if current_prob < 0.75 else
                    "red"
                )
                word_colors.append(color)
                
            current_word = token[1:] if token != "▁" else ""
            current_probs = [prob]
        else:
            current_word += token
            current_probs.append(prob)

    if current_word and current_probs:
        current_prob = sum(current_probs) / len(current_probs)
        word_probs.append(current_prob)
        
        # Determine color for the last word
        color = (
            "green" if current_prob < 0.25 else
            "yellow" if current_prob < 0.5 else
            "orange" if current_prob < 0.75 else
            "red"
        )
        word_colors.append(color)
    
    word_probs = [float(p) for p in word_probs]
    return word_probs, word_colors

# def get_word_classifications(text):
#     text = " ".join(text.split(" ")[:2048])
#     inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
#     inputs = {k: v.to(device) for k, v in inputs.items()}
#     tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
    
#     with torch.no_grad():
#         tags, emissions = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])

#     word_tags = []
#     color_output = []
#     current_word = ""
#     current_prob = 0.0

#     for token, prob in zip(tokens, tags[0]):
#         if token in ["<s>", "</s>"]:
#             continue
#         if token.startswith("▁"):
#             if current_word:
#                 word_tags.append(round(current_prob, 3))
#                 color = (
#                     "green" if current_prob < 0.25 else
#                     "yellow" if current_prob < 0.5 else
#                     "orange" if current_prob < 0.75 else
#                     "red"
#                 )
#                 color_output.append(f'<span style="color:{color}">{current_word}</span>')
#             current_word = token[1:] if token != "▁" else ""
#             current_prob = prob
#         else:
#             current_word += token
#             current_prob = max(current_prob, prob)

#     if current_word:
#         word_tags.append(round(current_prob, 3))
#         color = (
#             "green" if current_prob < 0.25 else
#             "yellow" if current_prob < 0.5 else
#             "orange" if current_prob < 0.75 else
#             "red"
#         )
#         color_output.append(f'<span style="color:{color}">{current_word}</span>')

#     output = " ".join(color_output)
#     return output, word_tags


# HF logging setup
def setup_hf_dataset():
    global DATASET_CREATED
    if not DATASET_CREATED and HF_TOKEN:
        try:
            create_repo(HF_DATASET_REPO, repo_type="dataset", token=HF_TOKEN, exist_ok=True)
            DATASET_CREATED = True
            print(f"Dataset {HF_DATASET_REPO} is ready.")
        except Exception as e:
            print(f"Error setting up dataset: {e}")

# Main inference + logging function
def infer_and_log(text_input):
    word_probs, word_colors = get_word_probabilities(text_input)
    timestamp = datetime.datetime.now().isoformat()
    submission_id = str(uuid.uuid4())

    log_data = {
        "id": submission_id,
        "timestamp": timestamp,
        "input": text_input,
        "output_probs": word_probs
    }

    os.makedirs("logs", exist_ok=True)
    log_file = f"logs/{timestamp.replace(':', '_')}.json"
    with open(log_file, "w") as f:
        json.dump(log_data, f, indent=2)

    if HF_TOKEN and DATASET_CREATED:
        try:
            HfApi().upload_file(
                path_or_fileobj=log_file,
                path_in_repo=f"logs/{os.path.basename(log_file)}",
                repo_id=HF_DATASET_REPO,
                repo_type="dataset",
                token=HF_TOKEN
            )
            print(f"Uploaded log {submission_id}")
        except Exception as e:
            print(f"Error uploading log: {e}")

    return "".join(word_colors)

def clear_fields():
    return "", ""

# Prepare dataset once
setup_hf_dataset()

# Gradio UI
with gr.Blocks() as app:
    gr.Markdown("Machine Generated Text Detector")

    with gr.Row():
        input_box = gr.Textbox(label="Input Text", lines=10)
        output_box = gr.Textbox(label="Output Text", lines=10, interactive=False)

    with gr.Row():
        submit_btn = gr.Button("Submit")
        clear_btn = gr.Button("Clear")
        
    
    submit_btn.click(fn=infer_and_log, inputs=input_box, outputs=output_box)
    clear_btn.click(fn=clear_fields, outputs=[input_box, output_box])

if __name__ == "__main__":
    app.launch()