Spaces:
Running
Running
File size: 59,724 Bytes
74e6395 8c014ea 74e6395 2a0abec 74e6395 aa45e61 af7ebad 74e6395 ec13f98 74e6395 ec13f98 74e6395 ec13f98 74e6395 2a0abec 74e6395 ec13f98 74e6395 ec13f98 74e6395 ec13f98 74e6395 ec13f98 4ebb124 74e6395 ec13f98 74e6395 4ebb124 74e6395 ec13f98 74e6395 ec13f98 74e6395 4ebb124 ec13f98 2a0abec ec13f98 74e6395 ec13f98 74e6395 ec13f98 74e6395 ec13f98 2a0abec 74e6395 2a0abec ec13f98 2a0abec ec13f98 2a0abec 74e6395 2a0abec ec13f98 2a0abec ec13f98 74e6395 ec13f98 2a0abec 74e6395 ec13f98 74e6395 ec13f98 2a0abec 74e6395 2a0abec 74e6395 ec13f98 74e6395 2a0abec 74e6395 2a0abec 74e6395 2a0abec 74e6395 2a0abec 74e6395 2a0abec 74e6395 2a0abec 74e6395 2a0abec 74e6395 7a81a82 74e6395 7a81a82 74e6395 aa45e61 86630a0 74e6395 8e43c08 7a81a82 74e6395 4cb75c5 74e6395 4cb75c5 4ebb124 4cb75c5 4ebb124 4cb75c5 74e6395 4cb75c5 74e6395 2a0abec 74e6395 2a0abec 74e6395 2a0abec 74e6395 2a0abec 74e6395 2a0abec 74e6395 2a0abec 74e6395 2a0abec 74e6395 2a0abec 74e6395 2a0abec 74e6395 4cb75c5 74e6395 4cb75c5 74e6395 4cb75c5 74e6395 4cb75c5 74e6395 4cb75c5 74e6395 2a0abec 74e6395 ec13f98 2a0abec ec13f98 2a0abec 51382b3 2a0abec c9da937 6c841a5 74e6395 2a0abec ec13f98 2a0abec 74e6395 ec13f98 74e6395 ec13f98 74e6395 2a0abec 74e6395 8e43c08 4ebb124 74e6395 af7ebad aa45e61 74e6395 4ebb124 74e6395 7a81a82 74e6395 2a0abec c9da937 2a0abec 6413dde ece90eb 2a0abec c9da937 74e6395 2a0abec 74e6395 2a0abec 74e6395 2a0abec 74e6395 2a0abec 74e6395 51382b3 74e6395 7a81a82 51382b3 74e6395 7a81a82 51382b3 0912f3f 51382b3 0912f3f 51382b3 74e6395 51382b3 74e6395 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 |
import os
from pathlib import Path
from typing import List, Union, Tuple
from PIL import Image
import ezdxf.units
import numpy as np
import torch
from torchvision import transforms
from ultralytics import YOLOWorld, YOLO
from ultralytics.engine.results import Results
from ultralytics.utils.plotting import save_one_box
from transformers import AutoModelForImageSegmentation
import cv2
import ezdxf
import gradio as gr
from MODNet.src.models.modnet import MODNet
import gc
# from scalingtestupdated import calculate_scaling_factor
from scalingtestupdated import calculate_scaling_factor_with_units, calculate_paper_scaling_factor, convert_units
from scipy.interpolate import splprep, splev
from scipy.ndimage import gaussian_filter1d
import json
import time
import signal
from shapely.ops import unary_union
from shapely.geometry import MultiPolygon, GeometryCollection, Polygon, Point
from u2netp import U2NETP
import logging
import shutil
# Initialize logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Create cache directory for models
CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache")
os.makedirs(CACHE_DIR, exist_ok=True)
# Paper size configurations (in mm)
PAPER_SIZES = {
"A4": {"width": 210, "height": 297},
"A3": {"width": 297, "height": 420},
"US Letter": {"width": 215.9, "height": 279.4}
}
def get_modnet():
"""Lazy load MODNet model"""
global modnet_global
if modnet_global is None:
logger.info("Loading MODNet model...")
modnet_global = MODNet(backbone_pretrained=False)
modnet_global.load_state_dict(torch.load('modnet_photographic_portrait_matting.ckpt', map_location='cpu'))
modnet_global.to(device).eval()
return modnet_global
def get_yolo_world():
"""Lazy load YOLO-World model"""
yolo_world = YOLOWorld('yolov8s-world.pt') # Smaller model for efficiency
return yolo_world
# Custom Exception Classes
class TimeoutReachedError(Exception):
pass
class BoundaryOverlapError(Exception):
pass
class TextOverlapError(Exception):
pass
class PaperNotDetectedError(Exception):
"""Raised when the paper cannot be detected in the image"""
pass
class MultipleObjectsError(Exception):
"""Raised when multiple objects are detected on the paper"""
def __init__(self, message="Multiple objects detected. Please place only a single object on the paper."):
super().__init__(message)
class NoObjectDetectedError(Exception):
"""Raised when no object is detected on the paper"""
def __init__(self, message="No object detected on the paper. Please ensure an object is placed on the paper."):
super().__init__(message)
class FingerCutOverlapError(Exception):
"""Raised when finger cuts overlap with existing geometry"""
def __init__(self, message="There was an overlap with fingercuts... Please try again to generate dxf."):
super().__init__(message)
class ReferenceBoxNotDetectedError(Exception):
"""Raised when reference box/paper cannot be detected"""
def __init__(self, message="Reference box not detected"):
super().__init__(message)
# Global model variables for lazy loading
paper_detector_global = None
u2net_global = None
birefnet = None
# Model paths
paper_model_path = os.path.join(CACHE_DIR, "paper_detector.pt") # You'll need to train/provide this
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
# Device configuration
device = "cpu"
torch.set_float32_matmul_precision(["high", "highest"][0])
def ensure_model_files():
"""Ensure model files are available in cache directory"""
if not os.path.exists(paper_model_path):
if os.path.exists("paper_detector.pt"):
shutil.copy("paper_detector.pt", paper_model_path)
else:
logger.warning("paper_detector.pt model file not found - using fallback detection")
if not os.path.exists(u2net_model_path):
if os.path.exists("u2netp.pth"):
shutil.copy("u2netp.pth", u2net_model_path)
else:
raise FileNotFoundError("u2netp.pth model file not found")
ensure_model_files()
# Lazy loading functions
def get_paper_detector():
"""Lazy load paper detector model"""
global paper_detector_global
if paper_detector_global is None:
logger.info("Loading paper detector model...")
if os.path.exists(paper_model_path):
try:
paper_detector_global = YOLO(paper_model_path)
logger.info("Paper detector loaded successfully")
except Exception as e:
logger.error(f"Failed to load paper detector: {e}")
paper_detector_global = None
else:
# Fallback to generic object detection for paper-like rectangles
logger.warning("Paper model file not found, using fallback detection")
paper_detector_global = None
return paper_detector_global
def get_u2net():
"""Lazy load U2NETP model"""
global u2net_global
if u2net_global is None:
logger.info("Loading U2NETP model...")
u2net_global = U2NETP(3, 1)
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
u2net_global.to(device)
u2net_global.eval()
logger.info("U2NETP model loaded successfully")
return u2net_global
def load_birefnet_model():
"""Load BiRefNet model from HuggingFace"""
return AutoModelForImageSegmentation.from_pretrained(
'ZhengPeng7/BiRefNet',
trust_remote_code=True
)
def get_birefnet():
"""Lazy load BiRefNet model"""
global birefnet
if birefnet is None:
logger.info("Loading BiRefNet model...")
birefnet = load_birefnet_model()
birefnet.to(device)
birefnet.eval()
logger.info("BiRefNet model loaded successfully")
return birefnet
# def detect_paper_contour(image: np.ndarray) -> Tuple[np.ndarray, float]:
# """
# Detect paper in the image using contour detection as fallback
# Returns the paper contour and estimated scaling factor
# """
# logger.info("Using contour-based paper detection")
# # Convert to grayscale
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
# # Apply bilateral filter to reduce noise while preserving edges
# filtered = cv2.bilateralFilter(gray, 9, 75, 75)
# # Apply adaptive threshold
# thresh = cv2.adaptiveThreshold(filtered, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
# cv2.THRESH_BINARY, 11, 2)
# # Edge detection with multiple thresholds
# edges1 = cv2.Canny(filtered, 50, 150)
# edges2 = cv2.Canny(filtered, 30, 100)
# edges = cv2.bitwise_or(edges1, edges2)
# # Morphological operations to connect broken edges
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# edges = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
# # Find contours
# contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# # Filter contours by area and aspect ratio to find paper-like rectangles
# paper_contours = []
# image_area = image.shape[0] * image.shape[1]
# min_area = image_area * 0.20 # At least 15% of image
# max_area = image_area * 0.85 # At most 95% of image
# for contour in contours:
# area = cv2.contourArea(contour)
# if min_area < area < max_area:
# # Approximate contour to polygon
# epsilon = 0.015 * cv2.arcLength(contour, True)
# approx = cv2.approxPolyDP(contour, epsilon, True)
# # Check if it's roughly rectangular (4 corners) or close to it
# if len(approx) >= 4:
# # Calculate bounding rectangle
# rect = cv2.boundingRect(approx)
# w, h = rect[2], rect[3]
# aspect_ratio = w / h if h > 0 else 0
# # Check if aspect ratio matches common paper ratios
# # A4: 1.414, A3: 1.414, US Letter: 1.294
# if 1.3 < aspect_ratio < 1.5: # More lenient tolerance
# # Check if contour area is close to bounding rect area (rectangularity)
# rect_area = w * h
# if rect_area > 0:
# extent = area / rect_area
# if extent > 0.85: # At least 70% rectangular
# paper_contours.append((contour, area, aspect_ratio, extent))
# if not paper_contours:
# logger.error("No paper-like contours found")
# raise ReferenceBoxNotDetectedError("Could not detect paper in the image using contour detection")
# # Select the best paper contour based on area and rectangularity
# paper_contours.sort(key=lambda x: (x[1] * x[3]), reverse=True) # Sort by area * extent
# best_contour = paper_contours[0][0]
# logger.info(f"Paper detected using contours: area={paper_contours[0][1]}, aspect_ratio={paper_contours[0][2]:.2f}")
# return best_contour, 0.0 # Return 0.0 as placeholder scaling factor
def detect_paper_contour(image: np.ndarray, output_unit: str = "mm") -> Tuple[np.ndarray, float]:
"""
Detect paper in the image using contour detection as fallback
Returns the paper contour and estimated scaling factor
"""
logger.info("Using contour-based paper detection")
# Convert to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
# Apply bilateral filter to reduce noise while preserving edges
filtered = cv2.bilateralFilter(gray, 9, 75, 75)
# Apply adaptive threshold
thresh = cv2.adaptiveThreshold(filtered, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)
# Edge detection with multiple thresholds
edges1 = cv2.Canny(filtered, 50, 150)
edges2 = cv2.Canny(filtered, 30, 100)
edges = cv2.bitwise_or(edges1, edges2)
# Morphological operations to connect broken edges
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
edges = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
# Find contours
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Filter contours by area and aspect ratio to find paper-like rectangles
paper_contours = []
image_area = image.shape[0] * image.shape[1]
min_area = image_area * 0.20 # At least 15% of image
max_area = image_area * 0.85 # At most 95% of image
for contour in contours:
area = cv2.contourArea(contour)
if min_area < area < max_area:
# Approximate contour to polygon
epsilon = 0.015 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
# Check if it's roughly rectangular (4 corners) or close to it
if len(approx) >= 4:
# Calculate bounding rectangle
rect = cv2.boundingRect(approx)
w, h = rect[2], rect[3]
aspect_ratio = w / h if h > 0 else 0
# Check if aspect ratio matches common paper ratios
# A4: 1.414, A3: 1.414, US Letter: 1.294
if 1.3 < aspect_ratio < 1.5: # More lenient tolerance
# Check if contour area is close to bounding rect area (rectangularity)
rect_area = w * h
if rect_area > 0:
extent = area / rect_area
if extent > 0.85: # At least 85% rectangular
paper_contours.append((contour, area, aspect_ratio, extent))
if not paper_contours:
logger.error("No paper-like contours found")
raise ReferenceBoxNotDetectedError("Could not detect paper in the image using contour detection")
# Select the best paper contour based on area and rectangularity
paper_contours.sort(key=lambda x: (x[1] * x[3]), reverse=True) # Sort by area * extent
best_contour = paper_contours[0][0]
logger.info(f"Paper detected using contours: area={paper_contours[0][1]}, aspect_ratio={paper_contours[0][2]:.2f}")
# Return 0.0 as placeholder - will be calculated later based on paper size
return best_contour, 0.0
def detect_paper_bounds(image: np.ndarray, paper_size: str, output_unit: str = "mm") -> Tuple[np.ndarray, float]:
"""
Detect paper bounds in the image and calculate scaling factor
"""
try:
paper_detector = get_paper_detector()
if paper_detector is not None:
# Use trained model if available
results = paper_detector.predict(image, conf=0.8, verbose=False)
if not results or len(results) == 0:
logger.warning("No results from paper detector")
return detect_paper_contour(image, output_unit)
# Check if boxes exist and are not empty
if not hasattr(results[0], 'boxes') or results[0].boxes is None or len(results[0].boxes) == 0:
logger.warning("No boxes detected by model, using fallback contour detection")
return detect_paper_contour(image, output_unit)
# Get the largest detected paper
boxes = results[0].boxes.xyxy.cpu().numpy()
if len(boxes) == 0:
logger.warning("Empty boxes detected, using fallback")
return detect_paper_contour(image, output_unit)
largest_box = None
max_area = 0
for box in boxes:
x_min, y_min, x_max, y_max = box
area = (x_max - x_min) * (y_max - y_min)
if area > max_area:
max_area = area
largest_box = box
if largest_box is None:
logger.warning("No valid paper box found, using fallback")
return detect_paper_contour(image, output_unit)
# Convert box to contour-like format
x_min, y_min, x_max, y_max = map(int, largest_box)
paper_contour = np.array([
[[x_min, y_min]],
[[x_max, y_min]],
[[x_max, y_max]],
[[x_min, y_max]]
])
logger.info(f"Paper detected by model: {x_min},{y_min} to {x_max},{y_max}")
else:
# Use fallback contour detection
logger.info("Using fallback contour detection for paper")
paper_contour, _ = detect_paper_contour(image, output_unit)
# Calculate scaling factor based on paper size with proper units
scaling_factor = calculate_paper_scaling_factor(paper_contour, paper_size, output_unit)
return paper_contour, scaling_factor
except Exception as e:
logger.error(f"Error in paper detection: {e}")
raise ReferenceBoxNotDetectedError(f"Failed to detect paper: {str(e)}")
# def detect_paper_bounds(image: np.ndarray, paper_size: str) -> Tuple[np.ndarray, float]:
# """
# Detect paper bounds in the image and calculate scaling factor
# """
# try:
# paper_detector = get_paper_detector()
# if paper_detector is not None:
# # Use trained model if available
# # FIXED: Add verbose=False to suppress prints, and use proper confidence threshold
# results = paper_detector.predict(image, conf=0.8, verbose=False) # Lower confidence threshold
# if not results or len(results) == 0:
# logger.warning("No results from paper detector")
# return detect_paper_contour(image)
# # Check if boxes exist and are not empty
# if not hasattr(results[0], 'boxes') or results[0].boxes is None or len(results[0].boxes) == 0:
# logger.warning("No boxes detected by model, using fallback contour detection")
# return detect_paper_contour(image)
# # Get the largest detected paper
# boxes = results[0].boxes.xyxy.cpu().numpy() # Convert to numpy
# if len(boxes) == 0:
# logger.warning("Empty boxes detected, using fallback")
# return detect_paper_contour(image)
# largest_box = None
# max_area = 0
# for box in boxes:
# x_min, y_min, x_max, y_max = box
# area = (x_max - x_min) * (y_max - y_min)
# if area > max_area:
# max_area = area
# largest_box = box
# if largest_box is None:
# logger.warning("No valid paper box found, using fallback")
# return detect_paper_contour(image)
# # Convert box to contour-like format
# x_min, y_min, x_max, y_max = map(int, largest_box)
# paper_contour = np.array([
# [[x_min, y_min]],
# [[x_max, y_min]],
# [[x_max, y_max]],
# [[x_min, y_max]]
# ])
# logger.info(f"Paper detected by model: {x_min},{y_min} to {x_max},{y_max}")
# else:
# # Use fallback contour detection
# logger.info("Using fallback contour detection for paper")
# paper_contour, _ = detect_paper_contour(image)
# # Calculate scaling factor based on paper size
# scaling_factor = calculate_paper_scaling_factor(paper_contour, paper_size)
# return paper_contour, scaling_factor
# except Exception as e:
# logger.error(f"Error in paper detection: {e}")
# # Instead of raising PaperNotDetectedError, raise ReferenceBoxNotDetectedError
# raise ReferenceBoxNotDetectedError(f"Failed to detect paper: {str(e)}")
# def calculate_paper_scaling_factor(paper_contour: np.ndarray, paper_size: str) -> float:
# """
# Calculate scaling factor based on detected paper dimensions
# """
# # Get paper dimensions
# paper_dims = PAPER_SIZES[paper_size]
# expected_width_mm = paper_dims["width"]
# expected_height_mm = paper_dims["height"]
# # Calculate bounding rectangle of paper contour
# rect = cv2.boundingRect(paper_contour)
# detected_width_px = rect[2]
# detected_height_px = rect[3]
# # Calculate scaling factors for both dimensions
# scale_x = expected_width_mm / detected_width_px
# scale_y = expected_height_mm / detected_height_px
# # Use average of both scales
# # scaling_factor = (scale_x + scale_y) / 2
# scaling_factor = min(scale_x, scale_y)
# logger.info(f"Paper detection: {detected_width_px}x{detected_height_px} px -> {expected_width_mm}x{expected_height_mm} mm")
# logger.info(f"Calculated scaling factor: {scaling_factor:.4f} mm/px")
# return scaling_factor
def calculate_paper_scaling_factor(paper_contour: np.ndarray, paper_size: str, output_unit: str = "mm") -> float:
"""
Calculate scaling factor based on detected paper dimensions with proper unit handling.
"""
from scalingtestupdated import calculate_paper_scaling_factor as calc_paper_scale
scaling_factor, unit_string = calc_paper_scale(paper_contour, paper_size, output_unit)
return scaling_factor
def validate_single_object(mask: np.ndarray, paper_contour: np.ndarray) -> None:
"""
Validate that only a single object is present on the paper
"""
# Create a mask for the paper area
paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8)
cv2.fillPoly(paper_mask, [paper_contour], 255)
# Apply paper mask to object mask
masked_objects = cv2.bitwise_and(mask, paper_mask)
# Find contours of objects within paper bounds
contours, _ = cv2.findContours(masked_objects, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Filter out very small contours (noise) and paper-sized contours
image_area = mask.shape[0] * mask.shape[1]
min_area = 1000 # Minimum area threshold
max_area = image_area * 0.5 # Maximum 50% of image area (to exclude paper detection)
significant_contours = [c for c in contours if min_area < cv2.contourArea(c) < max_area]
if len(significant_contours) == 0:
raise NoObjectDetectedError()
elif len(significant_contours) > 1:
raise MultipleObjectsError()
logger.info(f"Single object validated: {len(significant_contours)} significant contour(s) found")
def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
"""Remove background using U2NETP model"""
try:
u2net_model = get_u2net()
image_pil = Image.fromarray(image)
transform_u2netp = transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
input_tensor = transform_u2netp(image_pil).unsqueeze(0).to(device)
with torch.no_grad():
outputs = u2net_model(input_tensor)
pred = outputs[0]
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
pred_np = pred.squeeze().cpu().numpy()
pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
pred_np = (pred_np * 255).astype(np.uint8)
return pred_np
except Exception as e:
logger.error(f"Error in U2NETP background removal: {e}")
raise
def remove_bg_modnet(image: np.ndarray) -> np.ndarray:
"""Remove background using MODNet"""
try:
model = get_modnet()
# Preprocess
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
image_pil = Image.fromarray(image)
image_tensor = transform(image_pil).unsqueeze(0).to(device)
# Predict
with torch.no_grad():
_, _, matte = model(image_tensor, True)
# Post-process
matte = matte.squeeze().cpu().numpy()
matte = (matte * 255).astype(np.uint8)
matte = cv2.resize(matte, (image.shape[1], image.shape[0]))
return matte
except Exception as e:
logger.error(f"MODNet failed: {e}")
return remove_bg_u2netp(image) # Fallback to U2Net
def remove_bg(image: np.ndarray) -> np.ndarray:
"""Remove background using BiRefNet model for main objects"""
try:
birefnet_model = get_birefnet()
transform_image = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
image_pil = Image.fromarray(image)
input_images = transform_image(image_pil).unsqueeze(0).to(device)
with torch.no_grad():
preds = birefnet_model(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
scale_ratio = 1024 / max(image_pil.size)
scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
return np.array(pred_pil.resize(scaled_size))
except Exception as e:
logger.error(f"Error in BiRefNet background removal: {e}")
raise
# def exclude_paper_area(mask: np.ndarray, paper_contour: np.ndarray, expansion_factor: float = 1.2) -> np.ndarray:
# """
# Remove paper area from the mask to focus only on objects
# """
# # Create paper mask with slight expansion to ensure complete removal
# paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8)
# # # Expand paper contour slightly
# # epsilon = expansion_factor * cv2.arcLength(paper_contour, True)
# # expanded_contour = cv2.approxPolyDP(paper_contour, epsilon, True)
# # cv2.fillPoly(paper_mask, [expanded_contour], 255)
# # Create a more aggressive inward shrinking of paper bounds
# rect = cv2.boundingRect(paper_contour)
# shrink_pixels = int(min(rect[2], rect[3]) * 0.05) # Shrink by 5% of smaller dimension
# # Create shrunken rectangle
# x, y, w, h = rect
# shrunken_contour = np.array([
# [[x + shrink_pixels, y + shrink_pixels]],
# [[x + w - shrink_pixels, y + shrink_pixels]],
# [[x + w - shrink_pixels, y + h - shrink_pixels]],
# [[x + shrink_pixels, y + h - shrink_pixels]]
# ])
# cv2.fillPoly(paper_mask, [shrunken_contour], 255)
# # Invert paper mask and apply to object mask
# paper_mask_inv = cv2.bitwise_not(paper_mask)
# result_mask = cv2.bitwise_and(mask, paper_mask_inv)
# return result_mask
def mask_paper_area_in_image(image: np.ndarray, paper_contour: np.ndarray) -> np.ndarray:
"""
Black out paper area in the input image before sending to BiRefNet
"""
masked_image = image.copy()
# Create more aggressive paper mask
rect = cv2.boundingRect(paper_contour)
shrink_pixels = int(min(rect[2], rect[3]) * 0.08) # 8% shrink
x, y, w, h = rect
# Create mask for everything OUTSIDE the inner paper area
outer_mask = np.ones(image.shape[:2], dtype=np.uint8) * 255
inner_contour = np.array([
[[x + shrink_pixels, y + shrink_pixels]],
[[x + w - shrink_pixels, y + shrink_pixels]],
[[x + w - shrink_pixels, y + h - shrink_pixels]],
[[x + shrink_pixels, y + h - shrink_pixels]]
])
# Black out everything outside inner paper bounds
cv2.fillPoly(outer_mask, [inner_contour], 0)
# Apply mask to image
masked_image[outer_mask == 255] = [0, 0, 0] # Black out paper areas
return masked_image
def exclude_paper_area(mask: np.ndarray, paper_contour: np.ndarray, expansion_factor: float = 1.2) -> np.ndarray:
"""
Remove paper area from the mask to focus only on objects using soft boundaries
"""
# Create paper mask
paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8)
cv2.fillPoly(paper_mask, [paper_contour], 255)
# Create eroded version of paper mask (soft inward boundary)
erosion_size = int(min(mask.shape[0], mask.shape[1]) * 0.03) # 3% of image size
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (erosion_size, erosion_size))
eroded_paper_mask = cv2.erode(paper_mask, kernel, iterations=2)
# Apply soft mask: keep pixels in original mask AND in eroded paper area
result_mask = cv2.bitwise_and(mask, eroded_paper_mask)
# Gentle cleanup without hard cuts
small_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
result_mask = cv2.morphologyEx(result_mask, cv2.MORPH_CLOSE, small_kernel, iterations=1)
return result_mask
def resample_contour(contour, edge_radius_px: int = 0):
"""Resample contour with radius-aware smoothing and periodic handling."""
logger.info(f"Starting resample_contour with contour of shape {contour.shape}")
num_points = 1500
sigma = max(2, int(edge_radius_px) // 4)
if len(contour) < 4:
error_msg = f"Contour must have at least 4 points, but has {len(contour)} points."
logger.error(error_msg)
raise ValueError(error_msg)
try:
contour = contour[:, 0, :]
logger.debug(f"Reshaped contour to shape {contour.shape}")
if not np.array_equal(contour[0], contour[-1]):
contour = np.vstack([contour, contour[0]])
tck, u = splprep(contour.T, u=None, s=0, per=True)
u_new = np.linspace(u.min(), u.max(), num_points)
x_new, y_new = splev(u_new, tck, der=0)
if sigma > 0:
x_new = gaussian_filter1d(x_new, sigma=sigma, mode='wrap')
y_new = gaussian_filter1d(y_new, sigma=sigma, mode='wrap')
x_new[-1] = x_new[0]
y_new[-1] = y_new[0]
result = np.array([x_new, y_new]).T
logger.info(f"Completed resample_contour with result shape {result.shape}")
return result
except Exception as e:
logger.error(f"Error in resample_contour: {e}")
raise
# def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
# """Save contours as DXF splines with optional finger cuts"""
# doc = ezdxf.new(units=ezdxf.units.MM)
# doc.header["$INSUNITS"] = ezdxf.units.MM
# msp = doc.modelspace()
# final_polygons_inch = []
# finger_centers = []
# original_polygons = []
# # Scale correction factor
# scale_correction = 1.0
# for contour in inflated_contours:
# try:
# resampled_contour = resample_contour(contour)
# points_inch = [(x * scaling_factor, (height - y) * scaling_factor)
# for x, y in resampled_contour]
# if len(points_inch) < 3:
# continue
# tool_polygon = build_tool_polygon(points_inch)
# original_polygons.append(tool_polygon)
# if finger_clearance:
# try:
# tool_polygon, center = place_finger_cut_adjusted(
# tool_polygon, points_inch, finger_centers, final_polygons_inch
# )
# except FingerCutOverlapError:
# tool_polygon = original_polygons[-1]
# exterior_coords = polygon_to_exterior_coords(tool_polygon)
# if len(exterior_coords) < 3:
# continue
# # Apply scale correction
# corrected_coords = [(x * scale_correction, y * scale_correction) for x, y in exterior_coords]
# msp.add_spline(corrected_coords, degree=3, dxfattribs={"layer": "TOOLS"})
# final_polygons_inch.append(tool_polygon)
# except ValueError as e:
# logger.warning(f"Skipping contour: {e}")
# dxf_filepath = os.path.join("./outputs", "out.dxf")
# doc.saveas(dxf_filepath)
# return dxf_filepath, final_polygons_inch, original_polygons
def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
"""Save contours as DXF splines with optional finger cuts - scaling_factor should be in mm/px"""
doc = ezdxf.new(units=ezdxf.units.MM)
doc.header["$INSUNITS"] = ezdxf.units.MM
msp = doc.modelspace()
final_polygons_mm = [] # Use mm instead of inch for clarity
finger_centers = []
original_polygons = []
for contour in inflated_contours:
try:
resampled_contour = resample_contour(contour)
# Convert pixel coordinates to mm using the scaling factor
points_mm = [(x * scaling_factor, (height - y) * scaling_factor)
for x, y in resampled_contour]
if len(points_mm) < 3:
continue
tool_polygon = build_tool_polygon(points_mm)
original_polygons.append(tool_polygon)
if finger_clearance:
try:
tool_polygon, center = place_finger_cut_adjusted(
tool_polygon, points_mm, finger_centers, final_polygons_mm
)
except FingerCutOverlapError:
tool_polygon = original_polygons[-1]
exterior_coords = polygon_to_exterior_coords(tool_polygon)
if len(exterior_coords) < 3:
continue
# Coordinates are already in mm, so add directly to DXF
msp.add_spline(exterior_coords, degree=3, dxfattribs={"layer": "TOOLS"})
final_polygons_mm.append(tool_polygon)
except ValueError as e:
logger.warning(f"Skipping contour: {e}")
dxf_filepath = os.path.join("./outputs", "out.dxf")
doc.saveas(dxf_filepath)
return dxf_filepath, final_polygons_mm, original_polygons
def build_tool_polygon(points_inch):
"""Build a polygon from inch-converted points"""
return Polygon(points_inch)
def polygon_to_exterior_coords(poly):
"""Extract exterior coordinates from polygon"""
logger.info(f"Starting polygon_to_exterior_coords with input geometry type: {poly.geom_type}")
try:
if poly.geom_type == "GeometryCollection" or poly.geom_type == "MultiPolygon":
logger.debug(f"Performing unary_union on {poly.geom_type}")
unified = unary_union(poly)
if unified.is_empty:
logger.warning("unary_union produced an empty geometry; returning empty list")
return []
if unified.geom_type == "GeometryCollection" or unified.geom_type == "MultiPolygon":
largest = None
max_area = 0.0
for g in getattr(unified, "geoms", []):
if hasattr(g, "area") and g.area > max_area and hasattr(g, "exterior"):
max_area = g.area
largest = g
if largest is None:
logger.warning("No valid Polygon found in unified geometry; returning empty list")
return []
poly = largest
else:
poly = unified
if not hasattr(poly, "exterior") or poly.exterior is None:
logger.warning("Input geometry has no exterior ring; returning empty list")
return []
raw_coords = list(poly.exterior.coords)
total = len(raw_coords)
logger.info(f"Extracted {total} raw exterior coordinates")
if total == 0:
return []
# Subsample coordinates to at most 100 points
max_pts = 100
if total > max_pts:
step = total // max_pts
sampled = [raw_coords[i] for i in range(0, total, step)]
if sampled[-1] != raw_coords[-1]:
sampled.append(raw_coords[-1])
logger.info(f"Downsampled perimeter from {total} to {len(sampled)} points")
return sampled
else:
return raw_coords
except Exception as e:
logger.error(f"Error in polygon_to_exterior_coords: {e}")
return []
def place_finger_cut_adjusted(
tool_polygon: Polygon,
points_inch: list,
existing_centers: list,
all_polygons: list,
circle_diameter: float = 25.4,
min_gap: float = 0.5,
max_attempts: int = 100
) -> Tuple[Polygon, tuple]:
"""Place finger cuts with collision avoidance"""
logger.info(f"Starting place_finger_cut_adjusted with {len(points_inch)} input points")
def fallback_solution():
logger.warning("Using fallback approach for finger cut placement")
fallback_center = points_inch[len(points_inch) // 2]
r = circle_diameter / 2.0
fallback_circle = Point(fallback_center).buffer(r, resolution=32)
try:
union_poly = tool_polygon.union(fallback_circle)
except Exception as e:
logger.warning(f"Fallback union failed ({e}); trying buffer-union fallback")
union_poly = tool_polygon.buffer(0).union(fallback_circle.buffer(0))
existing_centers.append(fallback_center)
logger.info(f"Fallback finger cut placed at {fallback_center}")
return union_poly, fallback_center
r = circle_diameter / 2.0
needed_center_dist = circle_diameter + min_gap
raw_perimeter = polygon_to_exterior_coords(tool_polygon)
if not raw_perimeter:
logger.warning("No valid exterior coords found; using fallback immediately")
return fallback_solution()
if len(raw_perimeter) > 100:
step = len(raw_perimeter) // 100
perimeter_coords = raw_perimeter[::step]
logger.info(f"Subsampled perimeter from {len(raw_perimeter)} to {len(perimeter_coords)} points")
else:
perimeter_coords = raw_perimeter[:]
indices = list(range(len(perimeter_coords)))
np.random.shuffle(indices)
logger.debug(f"Shuffled perimeter indices for candidate order")
start_time = time.time()
timeout_secs = 5.0
attempts = 0
try:
while attempts < max_attempts:
if time.time() - start_time > timeout_secs - 0.1:
logger.warning(f"Approaching timeout after {attempts} attempts")
return fallback_solution()
for idx in indices:
if time.time() - start_time > timeout_secs - 0.05:
logger.warning("Timeout during candidate-point loop")
return fallback_solution()
cx, cy = perimeter_coords[idx]
for dx, dy in [(0, 0), (-min_gap/2, 0), (min_gap/2, 0), (0, -min_gap/2), (0, min_gap/2)]:
candidate_center = (cx + dx, cy + dy)
# Check distance to existing finger centers
too_close_finger = any(
np.hypot(candidate_center[0] - ex, candidate_center[1] - ey)
< needed_center_dist
for (ex, ey) in existing_centers
)
if too_close_finger:
continue
# Build candidate circle
candidate_circle = Point(candidate_center).buffer(r, resolution=32)
# Must overlap ≥30% with this polygon
try:
inter_area = tool_polygon.intersection(candidate_circle).area
except Exception:
continue
if inter_area < 0.3 * candidate_circle.area:
continue
# Must not intersect other polygons
invalid = False
for other_poly in all_polygons:
if other_poly.equals(tool_polygon):
continue
if other_poly.buffer(min_gap).intersects(candidate_circle) or \
other_poly.buffer(min_gap).touches(candidate_circle):
invalid = True
break
if invalid:
continue
# Union and return
try:
union_poly = tool_polygon.union(candidate_circle)
if union_poly.geom_type == "MultiPolygon" and len(union_poly.geoms) > 1:
continue
if union_poly.equals(tool_polygon):
continue
except Exception:
continue
existing_centers.append(candidate_center)
logger.info(f"Finger cut placed successfully at {candidate_center} after {attempts} attempts")
return union_poly, candidate_center
attempts += 1
if attempts >= (max_attempts // 2) and (time.time() - start_time) > timeout_secs * 0.8:
logger.warning(f"Approaching timeout (attempt {attempts})")
return fallback_solution()
logger.warning(f"No valid spot after {max_attempts} attempts, using fallback")
return fallback_solution()
except Exception as e:
logger.error(f"Error in place_finger_cut_adjusted: {e}")
return fallback_solution()
# def extract_outlines(binary_image: np.ndarray) -> Tuple[np.ndarray, list]:
# """Extract outlines from binary image"""
# contours, _ = cv2.findContours(
# binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
# )
# outline_image = np.full_like(binary_image, 255)
# return outline_image, contours
def extract_outlines(binary_image: np.ndarray) -> Tuple[np.ndarray, list]:
"""Extract outlines from binary image"""
# Check if contours are being cut at image boundaries
h, w = binary_image.shape
# Add small border to prevent boundary cutting
bordered_image = cv2.copyMakeBorder(binary_image, 5, 5, 5, 5, cv2.BORDER_CONSTANT, value=0)
contours, _ = cv2.findContours(
bordered_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
# Adjust contour coordinates back to original image space
adjusted_contours = []
for contour in contours:
adjusted_contour = contour - [5, 5] # Subtract border offset
adjusted_contours.append(adjusted_contour)
outline_image = np.full_like(binary_image, 255)
return outline_image, adjusted_contours
def round_edges(mask: np.ndarray, radius_mm: float, scaling_factor: float) -> np.ndarray:
"""Round mask edges using contour smoothing"""
if radius_mm <= 0 or scaling_factor <= 0:
return mask
radius_px = max(1, int(radius_mm / scaling_factor))
if np.count_nonzero(mask) < 500:
return cv2.dilate(cv2.erode(mask, np.ones((3,3))), np.ones((3,3)))
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
contours = [c for c in contours if cv2.contourArea(c) > 100]
smoothed_contours = []
for contour in contours:
try:
resampled = resample_contour(contour, radius_px)
resampled = resampled.astype(np.int32).reshape((-1, 1, 2))
smoothed_contours.append(resampled)
except Exception as e:
logger.warning(f"Error smoothing contour: {e}")
smoothed_contours.append(contour)
rounded = np.zeros_like(mask)
cv2.drawContours(rounded, smoothed_contours, -1, 255, thickness=cv2.FILLED)
return rounded
def cleanup_memory():
"""Clean up memory after processing"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
logger.info("Memory cleanup completed")
def cleanup_models():
"""Unload models to free memory"""
global paper_detector_global, u2net_global, birefnet
if paper_detector_global is not None:
del paper_detector_global
paper_detector_global = None
if u2net_global is not None:
del u2net_global
u2net_global = None
if birefnet is not None:
del birefnet
birefnet = None
cleanup_memory()
def make_square(img: np.ndarray):
"""Make the image square by padding"""
height, width = img.shape[:2]
max_dim = max(height, width)
pad_height = (max_dim - height) // 2
pad_width = (max_dim - width) // 2
pad_height_extra = max_dim - height - 2 * pad_height
pad_width_extra = max_dim - width - 2 * pad_width
if len(img.shape) == 3:
padded = np.pad(
img,
(
(pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra),
(0, 0),
),
mode="edge",
)
else:
padded = np.pad(
img,
(
(pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra),
),
mode="edge",
)
return padded
# def predict_with_paper(image, paper_size, offset,offset_unit, finger_clearance=False):
# """Main prediction function using paper as reference"""
# logger.info(f"Starting prediction with image shape: {image.shape}")
# logger.info(f"Paper size: {paper_size}")
# if offset_unit == "inches":
# offset_mm = offset * 25.4 # Convert to mm for internal calculations
# else:
# offset_mm = offset
# edge_radius = None
# if edge_radius is None or edge_radius == 0:
# edge_radius = 0.0001
# if offset < 0:
# raise gr.Error("Offset Value Can't be negative")
# try:
# # Detect paper bounds and calculate scaling factor
# logger.info("Starting paper detection...")
# paper_contour, scaling_factor = detect_paper_bounds(image, paper_size)
# logger.info(f"Paper detected successfully with scaling factor: {scaling_factor:.4f} mm/px")
# except ReferenceBoxNotDetectedError as e:
# logger.error(f"Paper detection failed: {e}")
# return (
# None, None, None, None,
# f"Error: {str(e)}"
# )
# except Exception as e:
# logger.error(f"Unexpected error in paper detection: {e}")
# raise gr.Error(f"Error processing image: {str(e)}")
# try:
# # Remove background from main objects
# # orig_size = image.shape[:2]
# # objects_mask = remove_bg(image)
# # Mask paper area in input image first
# masked_input_image = mask_paper_area_in_image(image, paper_contour)
# # Remove background from main objects
# orig_size = image.shape[:2]
# objects_mask = remove_bg(image)
# processed_size = objects_mask.shape[:2]
# # Resize mask to match original image
# objects_mask = cv2.resize(objects_mask, (image.shape[1], image.shape[0]))
# # Remove paper area from mask to focus only on objects
# objects_mask = exclude_paper_area(objects_mask, paper_contour)
# # Check if we actually have object pixels after paper exclusion
# object_pixels = np.count_nonzero(objects_mask)
# if object_pixels < 1000: # Minimum threshold
# raise NoObjectDetectedError("No significant object detected after excluding paper area")
# # Validate single object
# validate_single_object(objects_mask, paper_contour)
# except (MultipleObjectsError, NoObjectDetectedError) as e:
# return (
# None, None, None, None,
# f"Error: {str(e)}"
# )
# except Exception as e:
# raise gr.Error(f"Error in object detection: {str(e)}")
# # Apply edge rounding if specified
# rounded_mask = objects_mask.copy()
# # Apply dilation for offset - more precise calculation
# if offset_mm > 0:
# offset_pixels = int(round(float(offset_mm) / scaling_factor))
# if offset_pixels > 0:
# kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (offset_pixels*2+1, offset_pixels*2+1))
# dilated_mask = cv2.dilate(rounded_mask, kernel, iterations=1)
# else:
# dilated_mask = rounded_mask.copy()
# # Save original dilated mask for output
# Image.fromarray(dilated_mask).save("./outputs/scaled_mask_original.jpg")
# dilated_mask_orig = dilated_mask.copy()
# # Extract contours
# outlines, contours = extract_outlines(dilated_mask)
# try:
# # Generate DXF
# dxf, finger_polygons, original_polygons = save_dxf_spline(
# contours,
# scaling_factor,
# processed_size[0],
# finger_clearance=(finger_clearance == "On")
# )
# except FingerCutOverlapError as e:
# raise gr.Error(str(e))
# # Create annotated image
# shrunked_img_contours = image.copy()
# if finger_clearance == "On":
# outlines = np.full_like(dilated_mask, 255)
# for poly in finger_polygons:
# try:
# coords = np.array([
# (int(x / scaling_factor), int(processed_size[0] - y / scaling_factor))
# for x, y in poly.exterior.coords
# ], np.int32).reshape((-1, 1, 2))
# cv2.drawContours(shrunked_img_contours, [coords], -1, (0, 255, 0), thickness=2)
# cv2.drawContours(outlines, [coords], -1, 0, thickness=2)
# except Exception as e:
# logger.warning(f"Failed to draw finger cut: {e}")
# continue
# else:
# outlines = np.full_like(dilated_mask, 255)
# cv2.drawContours(shrunked_img_contours, contours, -1, (0, 255, 0), thickness=2)
# cv2.drawContours(outlines, contours, -1, 0, thickness=2)
# # # Draw paper bounds on annotated image
# # cv2.drawContours(shrunked_img_contours, [paper_contour], -1, (255, 0, 0), thickness=3)
# # # Add paper size text
# # paper_text = f"Paper: {paper_size}"
# # cv2.putText(shrunked_img_contours, paper_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
# cleanup_models()
# return (
# shrunked_img_contours,
# outlines,
# dxf,
# dilated_mask_orig,
# f"Scale: {scaling_factor:.4f} mm/px | Paper: {paper_size}"
# )
def predict_with_paper(image, paper_size, offset, offset_unit, finger_clearance=False):
"""Main prediction function using paper as reference"""
logger.info(f"Starting prediction with image shape: {image.shape}")
logger.info(f"Paper size: {paper_size}, Offset: {offset} {offset_unit}")
# Convert offset to mm for internal calculations (DXF generation expects mm)
if offset_unit == "inches":
offset_mm = convert_units(offset, "inches", "mm")
else:
offset_mm = offset
edge_radius = None
if edge_radius is None or edge_radius == 0:
edge_radius = 0.0001
if offset < 0:
raise gr.Error("Offset Value Can't be negative")
try:
# Detect paper bounds and calculate scaling factor (always in mm for DXF)
logger.info("Starting paper detection...")
paper_contour, scaling_factor = detect_paper_bounds(image, paper_size, output_unit="mm")
logger.info(f"Paper detected successfully with scaling factor: {scaling_factor:.6f} mm/px")
except ReferenceBoxNotDetectedError as e:
logger.error(f"Paper detection failed: {e}")
return (
None, None, None, None,
f"Error: {str(e)}"
)
except Exception as e:
logger.error(f"Unexpected error in paper detection: {e}")
raise gr.Error(f"Error processing image: {str(e)}")
# Rest of the function remains the same...
# [Keep all the existing object detection and DXF generation code]
try:
# Mask paper area in input image first
masked_input_image = mask_paper_area_in_image(image, paper_contour)
# Remove background from main objects
orig_size = image.shape[:2]
# objects_mask = remove_bg(image)
# objects_mask = remove_bg(image)
objects_mask = remove_bg_modnet(image)
processed_size = objects_mask.shape[:2]
# Resize mask to match original image
objects_mask = cv2.resize(objects_mask, (image.shape[1], image.shape[0]))
# Remove paper area from mask to focus only on objects
objects_mask = exclude_paper_area(objects_mask, paper_contour)
# Check if we actually have object pixels after paper exclusion
object_pixels = np.count_nonzero(objects_mask)
if object_pixels < 1000: # Minimum threshold
raise NoObjectDetectedError("No significant object detected after excluding paper area")
# Validate single object
validate_single_object(objects_mask, paper_contour)
except (MultipleObjectsError, NoObjectDetectedError) as e:
return (
None, None, None, None,
f"Error: {str(e)}"
)
except Exception as e:
raise gr.Error(f"Error in object detection: {str(e)}")
# Apply edge rounding if specified
rounded_mask = objects_mask.copy()
# Apply dilation for offset - more precise calculation using mm values
if offset_mm > 0:
offset_pixels = max(1, int(round(float(offset_mm) / scaling_factor)))
if offset_pixels > 0:
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (offset_pixels*2+1, offset_pixels*2+1))
dilated_mask = cv2.dilate(rounded_mask, kernel, iterations=1)
else:
dilated_mask = rounded_mask.copy()
else:
dilated_mask = rounded_mask.copy()
# Save original dilated mask for output
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_original.jpg")
dilated_mask_orig = dilated_mask.copy()
# Extract contours
outlines, contours = extract_outlines(dilated_mask)
try:
# Generate DXF - scaling_factor should be in mm/px for proper DXF units
dxf, finger_polygons, original_polygons = save_dxf_spline(
contours,
scaling_factor, # This should be mm/px
processed_size[0],
finger_clearance=(finger_clearance == "On")
)
except FingerCutOverlapError as e:
raise gr.Error(str(e))
# Create annotated image
shrunked_img_contours = image.copy()
if finger_clearance == "On":
outlines = np.full_like(dilated_mask, 255)
for poly in finger_polygons:
try:
coords = np.array([
(int(x / scaling_factor), int(processed_size[0] - y / scaling_factor))
for x, y in poly.exterior.coords
], np.int32).reshape((-1, 1, 2))
cv2.drawContours(shrunked_img_contours, [coords], -1, (0, 255, 0), thickness=2)
cv2.drawContours(outlines, [coords], -1, 0, thickness=2)
except Exception as e:
logger.warning(f"Failed to draw finger cut: {e}")
continue
else:
outlines = np.full_like(dilated_mask, 255)
cv2.drawContours(shrunked_img_contours, contours, -1, (0, 255, 0), thickness=2)
cv2.drawContours(outlines, contours, -1, 0, thickness=2)
cleanup_models()
# Format scaling info with proper unit display
if offset_unit == "inches":
offset_display = f"{offset} inches ({offset_mm:.3f} mm)"
else:
offset_display = f"{offset} mm"
scale_info = f"Scale: {scaling_factor:.6f} mm/px | Paper: {paper_size} | Offset: {offset_display}"
return (
shrunked_img_contours,
outlines,
dxf,
dilated_mask_orig,
scale_info
)
def predict_full_paper(image, paper_size, offset_value_mm,offset_unit, enable_finger_cut, selected_outputs):
finger_flag = "On" if enable_finger_cut == "On" else "Off"
# Always get all outputs from predict_with_paper
ann, outlines, dxf_path, mask, scale_info = predict_with_paper(
image,
paper_size,
offset=offset_value_mm,
offset_unit= offset_unit,
finger_clearance=finger_flag,
)
# Return based on selected outputs
return (
dxf_path, # Always return DXF
ann if "Annotated Image" in selected_outputs else None,
outlines if "Outlines" in selected_outputs else None,
mask if "Mask" in selected_outputs else None,
scale_info # Always return scaling info
)
# Gradio Interface
if __name__ == "__main__":
os.makedirs("./outputs", exist_ok=True)
with gr.Blocks(title="Paper-Based DXF Generator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Paper-Based DXF Generator
Upload an image with a single object placed on paper (A4, A3, or US Letter).
The paper serves as a size reference for accurate DXF generation.
**Instructions:**
1. Place a single object on paper
2. Select the correct paper size
3. Configure options as needed
4. Click Submit to generate DXF
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Input Image (Object on Paper)",
type="numpy",
height=400
)
paper_size = gr.Radio(
choices=["A4", "A3", "US Letter"],
value="A4",
label="Paper Size",
info="Select the paper size used in your image"
)
with gr.Group():
gr.Markdown("### Contour Offset")
with gr.Row():
offset_value_mm = gr.Number(
value=0.02,
label="Offset",
info="Expand contours outward by this amount",
precision=3,
minimum=0,
maximum=50
)
offset_unit = gr.Dropdown(
choices=["mm", "inches"],
value="mm",
label="Unit"
)
with gr.Group():
gr.Markdown("### Finger Cuts")
enable_finger_cut = gr.Radio(
choices=["On", "Off"],
value="Off",
label="Enable Finger Cuts",
info="Add circular cuts for easier handling"
)
output_options = gr.CheckboxGroup(
choices=["Annotated Image", "Outlines", "Mask"],
value=[],
label="Additional Outputs",
info="DXF is always included"
)
submit_btn = gr.Button("Generate DXF", variant="primary", size="lg")
with gr.Column():
with gr.Group():
gr.Markdown("### Generated Files")
dxf_file = gr.File(label="DXF File", file_types=[".dxf"])
scale_info = gr.Textbox(label="Scaling Information", interactive=False)
with gr.Group():
gr.Markdown("### Preview Images")
output_image = gr.Image(label="Annotated Image", visible=False)
outlines_image = gr.Image(label="Outlines", visible=False)
mask_image = gr.Image(label="Mask", visible=False)
def update_outputs_visibility(selected):
return [
gr.update(visible="Annotated Image" in selected),
gr.update(visible="Outlines" in selected),
gr.update(visible="Mask" in selected)
]
output_options.change(
fn=update_outputs_visibility,
inputs=output_options,
outputs=[output_image, outlines_image, mask_image]
)
submit_btn.click(
fn=predict_full_paper,
inputs=[
input_image,
paper_size,
offset_value_mm,
offset_unit,
enable_finger_cut,
output_options
],
outputs=[dxf_file, output_image, outlines_image, mask_image, scale_info]
)
# Example gallery
with gr.Row():
gr.Markdown("""
### Tips for Best Results:
- Ensure good lighting and clear paper edges
- Place object completely on the paper
- Avoid shadows that might interfere with detection
- Use high contrast between object and paper
""")
demo.launch(share=True) |