Spaces:
Sleeping
Sleeping
File size: 37,973 Bytes
6091504 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 |
import os from pathlib import Path from typing import List, Union, Tuple from PIL import Image import ezdxf.units import numpy as np import torch from torchvision import transforms from ultralytics import YOLOWorld, YOLO from ultralytics.engine.results import Results from ultralytics.utils.plotting import save_one_box from transformers import AutoModelForImageSegmentation import cv2 import ezdxf import gradio as gr import gc from scalingtestupdated import calculate_scaling_factor from scipy.interpolate import splprep, splev from scipy.ndimage import gaussian_filter1d import json import time import signal from shapely.ops import unary_union from shapely.geometry import MultiPolygon, GeometryCollection, Polygon, Point from u2netp import U2NETP import logging import shutil # Initialize logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Create cache directory for models CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache") os.makedirs(CACHE_DIR, exist_ok=True) # Paper size configurations (in mm) PAPER_SIZES = { "A4": {"width": 210, "height": 297}, "A3": {"width": 297, "height": 420}, "US Letter": {"width": 215.9, "height": 279.4} } # Custom Exception Classes class TimeoutReachedError(Exception): pass class BoundaryOverlapError(Exception): pass class TextOverlapError(Exception): pass class PaperNotDetectedError(Exception): """Raised when the paper cannot be detected in the image""" pass class MultipleObjectsError(Exception): """Raised when multiple objects are detected on the paper""" def __init__(self, message="Multiple objects detected. Please place only a single object on the paper."): super().__init__(message) class NoObjectDetectedError(Exception): """Raised when no object is detected on the paper""" def __init__(self, message="No object detected on the paper. Please ensure an object is placed on the paper."): super().__init__(message) class FingerCutOverlapError(Exception): """Raised when finger cuts overlap with existing geometry""" def __init__(self, message="There was an overlap with fingercuts... Please try again to generate dxf."): super().__init__(message) # Global model variables for lazy loading paper_detector_global = None u2net_global = None birefnet = None # Model paths paper_model_path = os.path.join(CACHE_DIR, "paper_detector.pt") # You'll need to train/provide this u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth") # Device configuration device = "cpu" torch.set_float32_matmul_precision(["high", "highest"][0]) def ensure_model_files(): """Ensure model files are available in cache directory""" if not os.path.exists(paper_model_path): if os.path.exists("paper_detector.pt"): shutil.copy("paper_detector.pt", paper_model_path) else: logger.warning("paper_detector.pt model file not found - using fallback detection") if not os.path.exists(u2net_model_path): if os.path.exists("u2netp.pth"): shutil.copy("u2netp.pth", u2net_model_path) else: raise FileNotFoundError("u2netp.pth model file not found") ensure_model_files() # Lazy loading functions def get_paper_detector(): """Lazy load paper detector model""" global paper_detector_global if paper_detector_global is None: logger.info("Loading paper detector model...") if os.path.exists(paper_model_path): paper_detector_global = YOLO(paper_model_path) else: # Fallback to generic object detection for paper-like rectangles logger.warning("Using fallback paper detection") paper_detector_global = None logger.info("Paper detector loaded successfully") return paper_detector_global def get_u2net(): """Lazy load U2NETP model""" global u2net_global if u2net_global is None: logger.info("Loading U2NETP model...") u2net_global = U2NETP(3, 1) u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu")) u2net_global.to(device) u2net_global.eval() logger.info("U2NETP model loaded successfully") return u2net_global def load_birefnet_model(): """Load BiRefNet model from HuggingFace""" return AutoModelForImageSegmentation.from_pretrained( 'ZhengPeng7/BiRefNet', trust_remote_code=True ) def get_birefnet(): """Lazy load BiRefNet model""" global birefnet if birefnet is None: logger.info("Loading BiRefNet model...") birefnet = load_birefnet_model() birefnet.to(device) birefnet.eval() logger.info("BiRefNet model loaded successfully") return birefnet def detect_paper_contour(image: np.ndarray) -> Tuple[np.ndarray, float]: """ Detect paper in the image using contour detection as fallback Returns the paper contour and estimated scaling factor """ # Convert to grayscale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image # Apply Gaussian blur blurred = cv2.GaussianBlur(gray, (5, 5), 0) # Edge detection edges = cv2.Canny(blurred, 50, 150) # Find contours contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Filter contours by area and aspect ratio to find paper-like rectangles paper_contours = [] min_area = (image.shape[0] * image.shape[1]) * 0.1 # At least 10% of image for contour in contours: area = cv2.contourArea(contour) if area > min_area: # Approximate contour to polygon epsilon = 0.02 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, epsilon, True) # Check if it's roughly rectangular (4 corners) if len(approx) >= 4: # Calculate bounding rectangle rect = cv2.boundingRect(approx) aspect_ratio = rect[2] / rect[3] # width / height # Check if aspect ratio matches common paper ratios # A4: 1.414, A3: 1.414, US Letter: 1.294 if 0.7 < aspect_ratio < 1.8: # Allow some tolerance paper_contours.append((contour, area, aspect_ratio)) if not paper_contours: raise PaperNotDetectedError("Could not detect paper in the image") # Select the largest paper-like contour paper_contours.sort(key=lambda x: x[1], reverse=True) best_contour = paper_contours[0][0] return best_contour, 0.0 # Return 0.0 as placeholder scaling factor def detect_paper_bounds(image: np.ndarray, paper_size: str) -> Tuple[np.ndarray, float]: """ Detect paper bounds in the image and calculate scaling factor """ try: paper_detector = get_paper_detector() if paper_detector is not None: # Use trained model if available results = paper_detector.predict(image, conf=0.5) if not results or len(results) == 0 or len(results[0].boxes) == 0: logger.warning("Model detection failed, using fallback contour detection") return detect_paper_contour(image) # Get the largest detected paper boxes = results[0].cpu().boxes.xyxy largest_box = None max_area = 0 for box in boxes: x_min, y_min, x_max, y_max = box area = (x_max - x_min) * (y_max - y_min) if area > max_area: max_area = area largest_box = box if largest_box is None: raise PaperNotDetectedError("No paper detected by model") # Convert box to contour-like format x_min, y_min, x_max, y_max = map(int, largest_box) paper_contour = np.array([ [[x_min, y_min]], [[x_max, y_min]], [[x_max, y_max]], [[x_min, y_max]] ]) else: # Use fallback contour detection paper_contour, _ = detect_paper_contour(image) # Calculate scaling factor based on paper size scaling_factor = calculate_paper_scaling_factor(paper_contour, paper_size) return paper_contour, scaling_factor except Exception as e: logger.error(f"Error in paper detection: {e}") raise PaperNotDetectedError(f"Failed to detect paper: {str(e)}") def calculate_paper_scaling_factor(paper_contour: np.ndarray, paper_size: str) -> float: """ Calculate scaling factor based on detected paper dimensions """ # Get paper dimensions paper_dims = PAPER_SIZES[paper_size] expected_width_mm = paper_dims["width"] expected_height_mm = paper_dims["height"] # Calculate bounding rectangle of paper contour rect = cv2.boundingRect(paper_contour) detected_width_px = rect[2] detected_height_px = rect[3] # Calculate scaling factors for both dimensions scale_x = expected_width_mm / detected_width_px scale_y = expected_height_mm / detected_height_px # Use average of both scales scaling_factor = (scale_x + scale_y) / 2 logger.info(f"Paper detection: {detected_width_px}x{detected_height_px} px -> {expected_width_mm}x{expected_height_mm} mm") logger.info(f"Calculated scaling factor: {scaling_factor:.4f} mm/px") return scaling_factor def validate_single_object(mask: np.ndarray, paper_contour: np.ndarray) -> None: """ Validate that only a single object is present on the paper """ # Create a mask for the paper area paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8) cv2.fillPoly(paper_mask, [paper_contour], 255) # Apply paper mask to object mask masked_objects = cv2.bitwise_and(mask, paper_mask) # Find contours of objects within paper bounds contours, _ = cv2.findContours(masked_objects, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Filter out very small contours (noise) min_area = 1000 # Minimum area threshold significant_contours = [c for c in contours if cv2.contourArea(c) > min_area] if len(significant_contours) == 0: raise NoObjectDetectedError() elif len(significant_contours) > 1: raise MultipleObjectsError() logger.info(f"Single object validated: {len(significant_contours)} significant contour(s) found") def remove_bg_u2netp(image: np.ndarray) -> np.ndarray: """Remove background using U2NETP model""" try: u2net_model = get_u2net() image_pil = Image.fromarray(image) transform_u2netp = transforms.Compose([ transforms.Resize((320, 320)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) input_tensor = transform_u2netp(image_pil).unsqueeze(0).to(device) with torch.no_grad(): outputs = u2net_model(input_tensor) pred = outputs[0] pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8) pred_np = pred.squeeze().cpu().numpy() pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height)) pred_np = (pred_np * 255).astype(np.uint8) return pred_np except Exception as e: logger.error(f"Error in U2NETP background removal: {e}") raise def remove_bg(image: np.ndarray) -> np.ndarray: """Remove background using BiRefNet model for main objects""" try: birefnet_model = get_birefnet() transform_image = transforms.Compose([ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) image_pil = Image.fromarray(image) input_images = transform_image(image_pil).unsqueeze(0).to(device) with torch.no_grad(): preds = birefnet_model(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) scale_ratio = 1024 / max(image_pil.size) scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio)) return np.array(pred_pil.resize(scaled_size)) except Exception as e: logger.error(f"Error in BiRefNet background removal: {e}") raise def exclude_paper_area(mask: np.ndarray, paper_contour: np.ndarray, expansion_factor: float = 1.1) -> np.ndarray: """ Remove paper area from the mask to focus only on objects """ # Create paper mask with slight expansion to ensure complete removal paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8) # Expand paper contour slightly epsilon = expansion_factor * cv2.arcLength(paper_contour, True) expanded_contour = cv2.approxPolyDP(paper_contour, epsilon, True) cv2.fillPoly(paper_mask, [expanded_contour], 255) # Invert paper mask and apply to object mask paper_mask_inv = cv2.bitwise_not(paper_mask) result_mask = cv2.bitwise_and(mask, paper_mask_inv) return result_mask def resample_contour(contour, edge_radius_px: int = 0): """Resample contour with radius-aware smoothing and periodic handling.""" logger.info(f"Starting resample_contour with contour of shape {contour.shape}") num_points = 1500 sigma = max(2, int(edge_radius_px) // 4) if len(contour) < 4: error_msg = f"Contour must have at least 4 points, but has {len(contour)} points." logger.error(error_msg) raise ValueError(error_msg) try: contour = contour[:, 0, :] logger.debug(f"Reshaped contour to shape {contour.shape}") if not np.array_equal(contour[0], contour[-1]): contour = np.vstack([contour, contour[0]]) tck, u = splprep(contour.T, u=None, s=0, per=True) u_new = np.linspace(u.min(), u.max(), num_points) x_new, y_new = splev(u_new, tck, der=0) if sigma > 0: x_new = gaussian_filter1d(x_new, sigma=sigma, mode='wrap') y_new = gaussian_filter1d(y_new, sigma=sigma, mode='wrap') x_new[-1] = x_new[0] y_new[-1] = y_new[0] result = np.array([x_new, y_new]).T logger.info(f"Completed resample_contour with result shape {result.shape}") return result except Exception as e: logger.error(f"Error in resample_contour: {e}") raise def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False): """Save contours as DXF splines with optional finger cuts""" doc = ezdxf.new(units=ezdxf.units.MM) doc.header["$INSUNITS"] = ezdxf.units.MM msp = doc.modelspace() final_polygons_inch = [] finger_centers = [] original_polygons = [] # Scale correction factor scale_correction = 1.079 for contour in inflated_contours: try: resampled_contour = resample_contour(contour) points_inch = [(x * scaling_factor, (height - y) * scaling_factor) for x, y in resampled_contour] if len(points_inch) < 3: continue tool_polygon = build_tool_polygon(points_inch) original_polygons.append(tool_polygon) if finger_clearance: try: tool_polygon, center = place_finger_cut_adjusted( tool_polygon, points_inch, finger_centers, final_polygons_inch ) except FingerCutOverlapError: tool_polygon = original_polygons[-1] exterior_coords = polygon_to_exterior_coords(tool_polygon) if len(exterior_coords) < 3: continue # Apply scale correction corrected_coords = [(x * scale_correction, y * scale_correction) for x, y in exterior_coords] msp.add_spline(corrected_coords, degree=3, dxfattribs={"layer": "TOOLS"}) final_polygons_inch.append(tool_polygon) except ValueError as e: logger.warning(f"Skipping contour: {e}") dxf_filepath = os.path.join("./outputs", "out.dxf") doc.saveas(dxf_filepath) return dxf_filepath, final_polygons_inch, original_polygons def build_tool_polygon(points_inch): """Build a polygon from inch-converted points""" return Polygon(points_inch) def polygon_to_exterior_coords(poly): """Extract exterior coordinates from polygon""" logger.info(f"Starting polygon_to_exterior_coords with input geometry type: {poly.geom_type}") try: if poly.geom_type == "GeometryCollection" or poly.geom_type == "MultiPolygon": logger.debug(f"Performing unary_union on {poly.geom_type}") unified = unary_union(poly) if unified.is_empty: logger.warning("unary_union produced an empty geometry; returning empty list") return [] if unified.geom_type == "GeometryCollection" or unified.geom_type == "MultiPolygon": largest = None max_area = 0.0 for g in getattr(unified, "geoms", []): if hasattr(g, "area") and g.area > max_area and hasattr(g, "exterior"): max_area = g.area largest = g if largest is None: logger.warning("No valid Polygon found in unified geometry; returning empty list") return [] poly = largest else: poly = unified if not hasattr(poly, "exterior") or poly.exterior is None: logger.warning("Input geometry has no exterior ring; returning empty list") return [] raw_coords = list(poly.exterior.coords) total = len(raw_coords) logger.info(f"Extracted {total} raw exterior coordinates") if total == 0: return [] # Subsample coordinates to at most 100 points max_pts = 100 if total > max_pts: step = total // max_pts sampled = [raw_coords[i] for i in range(0, total, step)] if sampled[-1] != raw_coords[-1]: sampled.append(raw_coords[-1]) logger.info(f"Downsampled perimeter from {total} to {len(sampled)} points") return sampled else: return raw_coords except Exception as e: logger.error(f"Error in polygon_to_exterior_coords: {e}") return [] def place_finger_cut_adjusted( tool_polygon: Polygon, points_inch: list, existing_centers: list, all_polygons: list, circle_diameter: float = 25.4, min_gap: float = 0.5, max_attempts: int = 100 ) -> Tuple[Polygon, tuple]: """Place finger cuts with collision avoidance""" logger.info(f"Starting place_finger_cut_adjusted with {len(points_inch)} input points") def fallback_solution(): logger.warning("Using fallback approach for finger cut placement") fallback_center = points_inch[len(points_inch) // 2] r = circle_diameter / 2.0 fallback_circle = Point(fallback_center).buffer(r, resolution=32) try: union_poly = tool_polygon.union(fallback_circle) except Exception as e: logger.warning(f"Fallback union failed ({e}); trying buffer-union fallback") union_poly = tool_polygon.buffer(0).union(fallback_circle.buffer(0)) existing_centers.append(fallback_center) logger.info(f"Fallback finger cut placed at {fallback_center}") return union_poly, fallback_center r = circle_diameter / 2.0 needed_center_dist = circle_diameter + min_gap raw_perimeter = polygon_to_exterior_coords(tool_polygon) if not raw_perimeter: logger.warning("No valid exterior coords found; using fallback immediately") return fallback_solution() if len(raw_perimeter) > 100: step = len(raw_perimeter) // 100 perimeter_coords = raw_perimeter[::step] logger.info(f"Subsampled perimeter from {len(raw_perimeter)} to {len(perimeter_coords)} points") else: perimeter_coords = raw_perimeter[:] indices = list(range(len(perimeter_coords))) np.random.shuffle(indices) logger.debug(f"Shuffled perimeter indices for candidate order") start_time = time.time() timeout_secs = 5.0 attempts = 0 try: while attempts < max_attempts: if time.time() - start_time > timeout_secs - 0.1: logger.warning(f"Approaching timeout after {attempts} attempts") return fallback_solution() for idx in indices: if time.time() - start_time > timeout_secs - 0.05: logger.warning("Timeout during candidate-point loop") return fallback_solution() cx, cy = perimeter_coords[idx] for dx, dy in [(0, 0), (-min_gap/2, 0), (min_gap/2, 0), (0, -min_gap/2), (0, min_gap/2)]: candidate_center = (cx + dx, cy + dy) # Check distance to existing finger centers too_close_finger = any( np.hypot(candidate_center[0] - ex, candidate_center[1] - ey) < needed_center_dist for (ex, ey) in existing_centers ) if too_close_finger: continue # Build candidate circle candidate_circle = Point(candidate_center).buffer(r, resolution=32) # Must overlap ≥30% with this polygon try: inter_area = tool_polygon.intersection(candidate_circle).area except Exception: continue if inter_area < 0.3 * candidate_circle.area: continue # Must not intersect other polygons invalid = False for other_poly in all_polygons: if other_poly.equals(tool_polygon): continue if other_poly.buffer(min_gap).intersects(candidate_circle) or \ other_poly.buffer(min_gap).touches(candidate_circle): invalid = True break if invalid: continue # Union and return try: union_poly = tool_polygon.union(candidate_circle) if union_poly.geom_type == "MultiPolygon" and len(union_poly.geoms) > 1: continue if union_poly.equals(tool_polygon): continue except Exception: continue existing_centers.append(candidate_center) logger.info(f"Finger cut placed successfully at {candidate_center} after {attempts} attempts") return union_poly, candidate_center attempts += 1 if attempts >= (max_attempts // 2) and (time.time() - start_time) > timeout_secs * 0.8: logger.warning(f"Approaching timeout (attempt {attempts})") return fallback_solution() logger.warning(f"No valid spot after {max_attempts} attempts, using fallback") return fallback_solution() except Exception as e: logger.error(f"Error in place_finger_cut_adjusted: {e}") return fallback_solution() def extract_outlines(binary_image: np.ndarray) -> Tuple[np.ndarray, list]: """Extract outlines from binary image""" contours, _ = cv2.findContours( binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE ) outline_image = np.full_like(binary_image, 255) return outline_image, contours def round_edges(mask: np.ndarray, radius_mm: float, scaling_factor: float) -> np.ndarray: """Round mask edges using contour smoothing""" if radius_mm <= 0 or scaling_factor <= 0: return mask radius_px = max(1, int(radius_mm / scaling_factor)) if np.count_nonzero(mask) < 500: return cv2.dilate(cv2.erode(mask, np.ones((3,3))), np.ones((3,3))) contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) contours = [c for c in contours if cv2.contourArea(c) > 100] smoothed_contours = [] for contour in contours: try: resampled = resample_contour(contour, radius_px) resampled = resampled.astype(np.int32).reshape((-1, 1, 2)) smoothed_contours.append(resampled) except Exception as e: logger.warning(f"Error smoothing contour: {e}") smoothed_contours.append(contour) rounded = np.zeros_like(mask) cv2.drawContours(rounded, smoothed_contours, -1, 255, thickness=cv2.FILLED) return rounded def cleanup_memory(): """Clean up memory after processing""" if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() logger.info("Memory cleanup completed") def cleanup_models(): """Unload models to free memory""" global paper_detector_global, u2net_global, birefnet if paper_detector_global is not None: del paper_detector_global paper_detector_global = None if u2net_global is not None: del u2net_global u2net_global = None if birefnet is not None: del birefnet birefnet = None cleanup_memory() def make_square(img: np.ndarray): """Make the image square by padding""" height, width = img.shape[:2] max_dim = max(height, width) pad_height = (max_dim - height) // 2 pad_width = (max_dim - width) // 2 pad_height_extra = max_dim - height - 2 * pad_height pad_width_extra = max_dim - width - 2 * pad_width if len(img.shape) == 3: padded = np.pad( img, ( (pad_height, pad_height + pad_height_extra), (pad_width, pad_width + pad_width_extra), (0, 0), ), mode="edge", ) else: padded = np.pad( img, ( (pad_height, pad_height + pad_height_extra), (pad_width, pad_width + pad_width_extra), ), mode="edge", ) return padded def predict_with_paper(image, paper_size, offset, offset_unit, edge_radius, finger_clearance=False): """Main prediction function using paper as reference""" if offset_unit == "inches": offset *= 25.4 if edge_radius is None or edge_radius == 0: edge_radius = 0.0001 if offset < 0: raise gr.Error("Offset Value Can't be negative") try: # Detect paper bounds and calculate scaling factor paper_contour, scaling_factor = detect_paper_bounds(image, paper_size) logger.info(f"Paper detected with scaling factor: {scaling_factor:.4f} mm/px") except PaperNotDetectedError as e: return ( None, None, None, None, f"Error: {str(e)}" ) except Exception as e: raise gr.Error(f"Error processing image: {str(e)}") try: # Remove background from main objects orig_size = image.shape[:2] objects_mask = remove_bg(image) processed_size = objects_mask.shape[:2] # Resize mask to match original image objects_mask = cv2.resize(objects_mask, (image.shape[1], image.shape[0])) # Remove paper area from mask to focus only on objects objects_mask = exclude_paper_area(objects_mask, paper_contour) # Validate single object validate_single_object(objects_mask, paper_contour) except (MultipleObjectsError, NoObjectDetectedError) as e: return ( None, None, None, None, f"Error: {str(e)}" ) except Exception as e: raise gr.Error(f"Error in object detection: {str(e)}") # Apply edge rounding if specified if edge_radius > 0: rounded_mask = round_edges(objects_mask, edge_radius, scaling_factor) else: rounded_mask = objects_mask.copy() # Apply dilation for offset if offset > 0: offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1 kernel = np.ones((int(offset_pixels), int(offset_pixels)), np.uint8) dilated_mask = cv2.dilate(rounded_mask, kernel) else: dilated_mask = rounded_mask.copy() # Save original dilated mask for output Image.fromarray(dilated_mask).save("./outputs/scaled_mask_original.jpg") dilated_mask_orig = dilated_mask.copy() # Extract contours outlines, contours = extract_outlines(dilated_mask) try: # Generate DXF dxf, finger_polygons, original_polygons = save_dxf_spline( contours, scaling_factor, processed_size[0], finger_clearance=(finger_clearance == "On") ) except FingerCutOverlapError as e: raise gr.Error(str(e)) # Create annotated image shrunked_img_contours = image.copy() if finger_clearance == "On": outlines = np.full_like(dilated_mask, 255) for poly in finger_polygons: try: coords = np.array([ (int(x / scaling_factor), int(processed_size[0] - y / scaling_factor)) for x, y in poly.exterior.coords ], np.int32).reshape((-1, 1, 2)) cv2.drawContours(shrunked_img_contours, [coords], -1, (0, 255, 0), thickness=2) cv2.drawContours(outlines, [coords], -1, 0, thickness=2) except Exception as e: logger.warning(f"Failed to draw finger cut: {e}") continue else: outlines = np.full_like(dilated_mask, 255) cv2.drawContours(shrunked_img_contours, contours, -1, (0, 255, 0), thickness=2) cv2.drawContours(outlines, contours, -1, 0, thickness=2) # Draw paper bounds on annotated image cv2.drawContours(shrunked_img_contours, [paper_contour], -1, (255, 0, 0), thickness=3) # Add paper size text paper_text = f"Paper: {paper_size}" cv2.putText(shrunked_img_contours, paper_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2) cleanup_models() return ( shrunked_img_contours, outlines, dxf, dilated_mask_orig, f"Scale: {scaling_factor:.4f} mm/px | Paper: {paper_size}" ) def predict_full_paper(image, paper_size, enable_fillet, fillet_value_mm, enable_finger_cut, selected_outputs): """ Full prediction function with paper reference and flexible outputs Returns DXF + conditionally selected additional outputs """ radius = fillet_value_mm if enable_fillet == "On" else 0 finger_flag = "On" if enable_finger_cut == "On" else "Off" # Always get all outputs from predict_with_paper ann, outlines, dxf_path, mask, scale_info = predict_with_paper( image, paper_size, offset=0, # No offset for now, can be added as parameter later offset_unit="mm", edge_radius=radius, finger_clearance=finger_flag, ) # Return based on selected outputs return ( dxf_path, # Always return DXF ann if "Annotated Image" in selected_outputs else None, outlines if "Outlines" in selected_outputs else None, mask if "Mask" in selected_outputs else None, scale_info # Always return scaling info ) # Gradio Interface if __name__ == "__main__": os.makedirs("./outputs", exist_ok=True) with gr.Blocks(title="Paper-Based DXF Generator", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # Paper-Based DXF Generator Upload an image with a single object placed on paper (A4, A3, or US Letter). The paper serves as a size reference for accurate DXF generation. **Instructions:** 1. Place a single object on paper 2. Select the correct paper size 3. Configure options as needed 4. Click Submit to generate DXF """) with gr.Row(): with gr.Column(): input_image = gr.Image( label="Input Image (Object on Paper)", type="numpy", height=400 ) paper_size = gr.Radio( choices=["A4", "A3", "US Letter"], value="A4", label="Paper Size", info="Select the paper size used in your image" ) with gr.Group(): gr.Markdown("### Edge Rounding") enable_fillet = gr.Radio( choices=["On", "Off"], value="Off", label="Enable Edge Rounding", interactive=True ) fillet_value_mm = gr.Slider( minimum=0, maximum=20, step=1, value=5, label="Edge Radius (mm)", visible=False, interactive=True ) with gr.Group(): gr.Markdown("### Finger Cuts") enable_finger_cut = gr.Radio( choices=["On", "Off"], value="Off", label="Enable Finger Cuts", info="Add circular cuts for easier handling" ) output_options = gr.CheckboxGroup( choices=["Annotated Image", "Outlines", "Mask"], value=[], label="Additional Outputs", info="DXF is always included" ) submit_btn = gr.Button("Generate DXF", variant="primary", size="lg") with gr.Column(): with gr.Group(): gr.Markdown("### Generated Files") dxf_file = gr.File(label="DXF File", file_types=[".dxf"]) scale_info = gr.Textbox(label="Scaling Information", interactive=False) with gr.Group(): gr.Markdown("### Preview Images") output_image = gr.Image(label="Annotated Image", visible=False) outlines_image = gr.Image(label="Outlines", visible=False) mask_image = gr.Image(label="Mask", visible=False) # Dynamic visibility updates def toggle_fillet(choice): return gr.update(visible=(choice == "On")) def update_outputs_visibility(selected): return [ gr.update(visible="Annotated Image" in selected), gr.update(visible="Outlines" in selected), gr.update(visible="Mask" in selected) ] # Event handlers enable_fillet.change( fn=toggle_fillet, inputs=enable_fillet, outputs=fillet_value_mm ) output_options.change( fn=update_outputs_visibility, inputs=output_options, outputs=[output_image, outlines_image, mask_image] ) submit_btn.click( fn=predict_full_paper, inputs=[ input_image, paper_size, enable_fillet, fillet_value_mm, enable_finger_cut, output_options ], outputs=[dxf_file, output_image, outlines_image, mask_image, scale_info] ) # Example gallery with gr.Row(): gr.Markdown(""" ### Tips for Best Results: - Ensure good lighting and clear paper edges - Place object completely on the paper - Avoid shadows that might interfere with detection - Use high contrast between object and paper """) demo.launch(share=True) |