Spaces:
Running
Running
File size: 16,095 Bytes
6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 a3c8117 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab 6091504 8492eab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
from pydantic import BaseModel
import numpy as np
from PIL import Image
import io, uuid, os, shutil, timeit
from datetime import datetime
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse
# Import your paper-based prediction function
from app import (
predict_full_paper,
ReferenceBoxNotDetectedError,
FingerCutOverlapError,
MultipleObjectsError,
NoObjectDetectedError,
PaperNotDetectedError
)
app = FastAPI()
# Allow CORS if needed
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
BASE_URL = "https://app.us-central1.run.app"
OUTPUT_DIR = os.path.abspath("./outputs")
os.makedirs(OUTPUT_DIR, exist_ok=True)
UPDATES_DIR = os.path.abspath("./updates")
os.makedirs(UPDATES_DIR, exist_ok=True)
# Mount static directories with normal StaticFiles
app.mount("/outputs", StaticFiles(directory=OUTPUT_DIR), name="outputs")
app.mount("/updates", StaticFiles(directory=UPDATES_DIR), name="updates")
def save_and_build_urls(
session_id: str,
dxf_path: str,
output_image: np.ndarray = None,
outlines: np.ndarray = None,
mask: np.ndarray = None,
endpoint_type: str = "predict",
paper_size: str = None,
offset_value: float = None,
offset_unit: str = "mm",
finger_cut: str = "Off"
):
"""Helper to save all artifacts and return public URLs."""
request_dir = os.path.join(OUTPUT_DIR, session_id)
os.makedirs(request_dir, exist_ok=True)
# Get current date
current_date = datetime.utcnow().strftime("%d-%m-%Y")
# Format offset value with underscore instead of dot
offset_str = f"{offset_value:.3f}".replace(".", "_") if offset_value is not None else "0_000"
# Create descriptive DXF filename
if paper_size and offset_value is not None:
dxf_fn = f"DXF_{current_date}_{paper_size}_{offset_str}{offset_unit}"
if finger_cut == "On":
dxf_fn += "_fingercut"
dxf_fn += ".dxf"
else:
dxf_fn = f"DXF_{current_date}.dxf"
# Full path for DXF
new_dxf_path = os.path.join(request_dir, dxf_fn)
# Copy DXF file
if os.path.exists(dxf_path):
shutil.copy(dxf_path, new_dxf_path)
else:
# Fallback if your DXF generator returns bytes or string
with open(new_dxf_path, "wb") as f:
if isinstance(dxf_path, (bytes, bytearray)):
f.write(dxf_path)
else:
f.write(str(dxf_path).encode("utf-8"))
urls = {
"dxf_url": f"{BASE_URL}/download/{session_id}/{dxf_fn}",
}
# Save optional images if provided
if output_image is not None:
out_fn = "annotated_image.jpg"
out_path = os.path.join(request_dir, out_fn)
Image.fromarray(output_image).save(out_path)
urls["output_image_url"] = f"{BASE_URL}/outputs/{session_id}/{out_fn}"
if outlines is not None:
outlines_fn = "outlines.jpg"
outlines_path = os.path.join(request_dir, outlines_fn)
Image.fromarray(outlines).save(outlines_path)
urls["outlines_url"] = f"{BASE_URL}/outputs/{session_id}/{outlines_fn}"
if mask is not None:
mask_fn = "mask.jpg"
mask_path = os.path.join(request_dir, mask_fn)
Image.fromarray(mask).save(mask_path)
urls["mask_url"] = f"{BASE_URL}/outputs/{session_id}/{mask_fn}"
return urls
# Add new endpoint for downloading DXF files
@app.get("/download/{session_id}/{filename}")
async def download_file(session_id: str, filename: str):
file_path = os.path.join(OUTPUT_DIR, session_id, filename)
if not os.path.exists(file_path):
raise HTTPException(status_code=404, detail="File not found")
return FileResponse(
path=file_path,
filename=filename,
media_type="application/x-dxf",
headers={"Content-Disposition": f"attachment; filename={filename}"}
)
@app.post("/predict_paper_simple")
async def predict_paper_simple_api(
file: UploadFile = File(...),
paper_size: str = Form(..., regex="^(A4|A3|US Letter)$"),
):
"""
Simple paper-based predict: image + paper size β DXF only
Default: 0mm offset, no finger cuts
"""
session_id = str(uuid.uuid4())
try:
img_bytes = await file.read()
image = np.array(Image.open(io.BytesIO(img_bytes)).convert("RGB"))
except Exception:
raise HTTPException(400, "Invalid image upload")
try:
start = timeit.default_timer()
# Call predict_full_paper with default values
dxf_path, ann_img, outlines_img, mask_img, scale_info = predict_full_paper(
image=image,
paper_size=paper_size,
offset_value_mm=0.0, # No offset
offset_unit="mm",
enable_finger_cut="Off", # No finger cuts
selected_outputs=[] # DXF only
)
elapsed = timeit.default_timer() - start
print(f"[{session_id}] predict_paper_simple in {elapsed:.2f}s - {scale_info}")
urls = save_and_build_urls(
session_id=session_id,
dxf_path=dxf_path,
endpoint_type="predict_paper_simple",
paper_size=paper_size,
offset_value=0.0,
offset_unit="mm",
finger_cut="Off"
)
# Add scaling info to response
urls["scale_info"] = scale_info
return urls
except (ReferenceBoxNotDetectedError, PaperNotDetectedError):
raise HTTPException(status_code=400, detail="Error detecting paper! Please ensure the paper is clearly visible and try again.")
except (MultipleObjectsError):
raise HTTPException(status_code=400, detail="Multiple objects detected! Please place only a single object on the paper.")
except (NoObjectDetectedError):
raise HTTPException(status_code=400, detail="No object detected! Please ensure an object is placed on the paper.")
except FingerCutOverlapError:
raise HTTPException(status_code=400, detail="There was an overlap with fingercuts! Please try again to generate dxf.")
except Exception as e:
print(f"Error in predict_paper_simple: {str(e)}")
raise HTTPException(status_code=500, detail="Error processing image! Please try again with a clearer image.")
@app.post("/predict_paper_with_offset")
async def predict_paper_with_offset_api(
file: UploadFile = File(...),
paper_size: str = Form(..., regex="^(A4|A3|US Letter)$"),
offset_value: float = Form(...),
offset_unit: str = Form(..., regex="^(mm|inches)$"),
include_images: bool = Form(False) # Optional: include preview images
):
"""
Paper-based predict with offset: image + paper size + offset β DXF + optional images
"""
session_id = str(uuid.uuid4())
try:
img_bytes = await file.read()
image = np.array(Image.open(io.BytesIO(img_bytes)).convert("RGB"))
except Exception:
raise HTTPException(400, "Invalid image upload")
# Validate offset
if offset_value < 0:
raise HTTPException(400, "Offset value cannot be negative")
if offset_value > 50: # Reasonable upper limit
raise HTTPException(400, "Offset value too large (max 50)")
try:
start = timeit.default_timer()
# Determine which outputs to include
selected_outputs = ["Annotated Image", "Outlines", "Mask"] if include_images else []
dxf_path, ann_img, outlines_img, mask_img, scale_info = predict_full_paper(
image=image,
paper_size=paper_size,
offset_value_mm=offset_value,
offset_unit=offset_unit,
enable_finger_cut="Off", # No finger cuts
selected_outputs=selected_outputs
)
elapsed = timeit.default_timer() - start
print(f"[{session_id}] predict_paper_with_offset in {elapsed:.2f}s - {scale_info}")
urls = save_and_build_urls(
session_id=session_id,
dxf_path=dxf_path,
output_image=ann_img if include_images else None,
outlines=outlines_img if include_images else None,
mask=mask_img if include_images else None,
endpoint_type="predict_paper_with_offset",
paper_size=paper_size,
offset_value=offset_value,
offset_unit=offset_unit,
finger_cut="Off"
)
urls["scale_info"] = scale_info
return urls
except (ReferenceBoxNotDetectedError, PaperNotDetectedError):
raise HTTPException(status_code=400, detail="Error detecting paper! Please ensure the paper is clearly visible and try again.")
except (MultipleObjectsError):
raise HTTPException(status_code=400, detail="Multiple objects detected! Please place only a single object on the paper.")
except (NoObjectDetectedError):
raise HTTPException(status_code=400, detail="No object detected! Please ensure an object is placed on the paper.")
except FingerCutOverlapError:
raise HTTPException(status_code=400, detail="There was an overlap with fingercuts! Please try again to generate dxf.")
except Exception as e:
print(f"Error in predict_paper_with_offset: {str(e)}")
raise HTTPException(status_code=500, detail="Error processing image! Please try again with a clearer image.")
@app.post("/predict_paper_full")
async def predict_paper_full_api(
file: UploadFile = File(...),
paper_size: str = Form(..., regex="^(A4|A3|US Letter)$"),
offset_value: float = Form(...),
offset_unit: str = Form(..., regex="^(mm|inches)$"),
enable_finger_cut: str = Form(..., regex="^(On|Off)$"),
include_images: bool = Form(False) # Optional: include preview images
):
"""
Full paper-based predict: image + paper size + offset + finger cuts β DXF + optional images
"""
session_id = str(uuid.uuid4())
try:
img_bytes = await file.read()
image = np.array(Image.open(io.BytesIO(img_bytes)).convert("RGB"))
except Exception:
raise HTTPException(400, "Invalid image upload")
# Validate offset
if offset_value < 0:
raise HTTPException(400, "Offset value cannot be negative")
if offset_value > 50:
raise HTTPException(400, "Offset value too large (max 50)")
try:
start = timeit.default_timer()
# Determine which outputs to include
selected_outputs = ["Annotated Image", "Outlines", "Mask"] if include_images else []
dxf_path, ann_img, outlines_img, mask_img, scale_info = predict_full_paper(
image=image,
paper_size=paper_size,
offset_value_mm=offset_value,
offset_unit=offset_unit,
enable_finger_cut=enable_finger_cut,
selected_outputs=selected_outputs
)
elapsed = timeit.default_timer() - start
print(f"[{session_id}] predict_paper_full in {elapsed:.2f}s - {scale_info}")
urls = save_and_build_urls(
session_id=session_id,
dxf_path=dxf_path,
output_image=ann_img if include_images else None,
outlines=outlines_img if include_images else None,
mask=mask_img if include_images else None,
endpoint_type="predict_paper_full",
paper_size=paper_size,
offset_value=offset_value,
offset_unit=offset_unit,
finger_cut=enable_finger_cut
)
urls["scale_info"] = scale_info
return urls
except (ReferenceBoxNotDetectedError, PaperNotDetectedError):
raise HTTPException(status_code=400, detail="Error detecting paper! Please ensure the paper is clearly visible and try again.")
except (MultipleObjectsError):
raise HTTPException(status_code=400, detail="Multiple objects detected! Please place only a single object on the paper.")
except (NoObjectDetectedError):
raise HTTPException(status_code=400, detail="No object detected! Please ensure an object is placed on the paper.")
except FingerCutOverlapError:
raise HTTPException(status_code=400, detail="There was an overlap with fingercuts! Please try again to generate dxf.")
except Exception as e:
print(f"Error in predict_paper_full: {str(e)}")
raise HTTPException(status_code=500, detail="Error processing image! Please try again with a clearer image.")
# Keep the legacy endpoints for backward compatibility (optional)
@app.post("/predict1")
async def predict1_api(
file: UploadFile = File(...)
):
"""
Legacy endpoint - redirects to simple paper-based prediction with A4 default
"""
return await predict_paper_simple_api(file=file, paper_size="A4")
@app.post("/predict2")
async def predict2_api(
file: UploadFile = File(...),
enable_fillet: str = Form(..., regex="^(On|Off)$"),
fillet_value_mm: float = Form(...)
):
"""
Legacy endpoint - redirects to paper-based prediction with offset
Note: Fillet functionality mapped to offset for compatibility
"""
# Map fillet to offset (you might want to adjust this logic)
offset_value = fillet_value_mm if enable_fillet == "On" else 0.0
return await predict_paper_with_offset_api(
file=file,
paper_size="A4", # Default to A4
offset_value=offset_value,
offset_unit="mm",
include_images=True
)
@app.post("/predict3")
async def predict3_api(
file: UploadFile = File(...),
enable_fillet: str = Form(..., regex="^(On|Off)$"),
fillet_value_mm: float = Form(...),
enable_finger_cut: str = Form(..., regex="^(On|Off)$")
):
"""
Legacy endpoint - redirects to full paper-based prediction
"""
offset_value = fillet_value_mm if enable_fillet == "On" else 0.0
return await predict_paper_full_api(
file=file,
paper_size="A4", # Default to A4
offset_value=offset_value,
offset_unit="mm",
enable_finger_cut=enable_finger_cut,
include_images=True
)
@app.post("/update")
async def update_files(
output_image: UploadFile = File(...),
outlines_image: UploadFile = File(...),
mask_image: UploadFile = File(...),
dxf_file: UploadFile = File(...)
):
session_id = str(uuid.uuid4())
update_dir = os.path.join(UPDATES_DIR, session_id)
os.makedirs(update_dir, exist_ok=True)
try:
upload_map = {
"output_image": output_image,
"outlines_image": outlines_image,
"mask_image": mask_image,
"dxf_file": dxf_file,
}
urls = {}
for key, up in upload_map.items():
fn = up.filename
path = os.path.join(update_dir, fn)
with open(path, "wb") as f:
shutil.copyfileobj(up.file, f)
urls[key] = f"{BASE_URL}/updates/{session_id}/{fn}"
return {"session_id": session_id, "uploaded": urls}
except Exception as e:
raise HTTPException(500, f"Update failed: {e}")
from fastapi import Response
@app.get("/health")
def health():
return Response(content="OK", status_code=200)
@app.get("/")
def root():
return {
"message": "Paper-based DXF Generator API",
"endpoints": [
"/predict_paper_simple - Simple DXF generation with paper reference",
"/predict_paper_with_offset - DXF generation with contour offset",
"/predict_paper_full - Full DXF generation with all features",
"/predict1, /predict2, /predict3 - Legacy endpoints (backward compatibility)"
],
"paper_sizes": ["A4", "A3", "US Letter"],
"units": ["mm", "inches"]
}
if __name__ == "__main__":
import uvicorn
port = int(os.environ.get("PORT", 8080))
print(f"Starting FastAPI server on 0.0.0.0:{port}...")
uvicorn.run(app, host="0.0.0.0", port=port) |