File size: 15,949 Bytes
6091504
 
 
 
ebb091d
6091504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb091d
6091504
 
 
 
 
 
 
 
 
ebb091d
6091504
ebb091d
6091504
ebb091d
 
 
6091504
 
ebb091d
6091504
 
ebb091d
 
6091504
 
ebb091d
6091504
 
ebb091d
 
 
 
6091504
ebb091d
6091504
ebb091d
 
6091504
ebb091d
6091504
ebb091d
6091504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb091d
 
 
 
 
 
 
 
 
 
 
6091504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb091d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29b394e
ebb091d
 
 
 
 
 
 
29b394e
ebb091d
 
 
 
 
 
29b394e
 
 
 
ebb091d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29b394e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb091d
 
 
 
29b394e
 
ebb091d
 
 
eb2ee96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb091d
6091504
 
 
 
ebb091d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import cv2
import numpy as np
import os
import argparse
from typing import Union, Tuple
from matplotlib import pyplot as plt

class ScalingSquareDetector:
    def __init__(self, feature_detector="ORB", debug=False):
        """
        Initialize the detector with the desired feature matching algorithm.
        :param feature_detector: "ORB" or "SIFT" (default is "ORB").
        :param debug: If True, saves intermediate images for debugging.
        """
        self.feature_detector = feature_detector
        self.debug = debug
        self.detector = self._initialize_detector()

    def _initialize_detector(self):
        """
        Initialize the chosen feature detector.
        :return: OpenCV detector object.
        """
        if self.feature_detector.upper() == "SIFT":
            return cv2.SIFT_create()
        elif self.feature_detector.upper() == "ORB":
            return cv2.ORB_create()
        else:
            raise ValueError("Invalid feature detector. Choose 'ORB' or 'SIFT'.")

    def find_scaling_square(
        self, target_image, known_size_mm, roi_margin=30
    ):
        """
        Detect the scaling square in the target image based on the reference image.
        :param target_image: Binary image containing the square.
        :param known_size_mm: Physical size of the square in millimeters.
        :param roi_margin: Margin to expand the ROI around the detected square (in pixels).
        :return: Scaling factor (mm per pixel).
        """
        contours, _ = cv2.findContours(
            target_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
        )

        if not contours:
            raise ValueError("No contours found in the target image.")

        # Select the largest contour (assuming it's the reference object)
        print(f"No of contours: {len(contours)}")
        largest_contour = max(contours, key=cv2.contourArea)

        # Draw the largest contour on the original image for debugging
        target_image_color = cv2.cvtColor(target_image, cv2.COLOR_GRAY2BGR)
        cv2.drawContours(
            target_image_color, [largest_contour], -1, (255, 0, 0), 3
        )

        if self.debug:
            cv2.imwrite("largest_contour.jpg", target_image_color)

        # Calculate the bounding rectangle of the largest contour
        x, y, w, h = cv2.boundingRect(largest_contour)
        square_width_px = w
        square_height_px = h
        
        print(f"Reference object size: {known_size_mm} mm")
        print(f"Detected width: {square_width_px} px")
        print(f"Detected height: {square_height_px} px")

        # Calculate the scaling factor using average of width and height
        avg_square_size_px = (square_width_px + square_height_px) / 2
        print(f"Average square size: {avg_square_size_px} px")
        
        scaling_factor = known_size_mm / avg_square_size_px  # mm per pixel
        print(f"Calculated scaling factor: {scaling_factor:.6f} mm per pixel")

        return scaling_factor

    def draw_debug_images(self, output_folder):
        """
        Save debug images if enabled.
        :param output_folder: Directory to save debug images.
        """
        if self.debug:
            if not os.path.exists(output_folder):
                os.makedirs(output_folder)
            debug_images = ["largest_contour.jpg"]
            for img_name in debug_images:
                if os.path.exists(img_name):
                    os.rename(img_name, os.path.join(output_folder, img_name))


def calculate_scaling_factor(
    target_image,
    reference_obj_size_mm,
    feature_detector="ORB",
    debug=False,
    roi_margin=30,
) -> float:
    """
    Calculate scaling factor from reference object in image.
    
    :param target_image: Input image (numpy array)
    :param reference_obj_size_mm: Known size of reference object in millimeters
    :param feature_detector: Feature detector to use ("ORB" or "SIFT")
    :param debug: Enable debug output
    :param roi_margin: ROI margin in pixels
    :return: Scaling factor in mm per pixel
    """
    # Initialize detector
    detector = ScalingSquareDetector(feature_detector=feature_detector, debug=debug)

    # Find scaling square and calculate scaling factor
    scaling_factor = detector.find_scaling_square(
        target_image=target_image,
        known_size_mm=reference_obj_size_mm,
        roi_margin=roi_margin,
    )

    # Save debug images
    if debug:
        detector.draw_debug_images("debug_outputs")

    return scaling_factor


def convert_units(value: float, from_unit: str, to_unit: str) -> float:
    """
    Convert between mm and inches.
    
    :param value: Value to convert
    :param from_unit: Source unit ("mm" or "inches")
    :param to_unit: Target unit ("mm" or "inches")
    :return: Converted value
    """
    if from_unit == to_unit:
        return value
    
    if from_unit == "inches" and to_unit == "mm":
        return value * 25.4
    elif from_unit == "mm" and to_unit == "inches":
        return value / 25.4
    else:
        raise ValueError(f"Unsupported unit conversion: {from_unit} to {to_unit}")


def calculate_scaling_factor_with_units(
    target_image,
    reference_obj_size: float,
    reference_unit: str = "mm",
    output_unit: str = "mm",
    feature_detector="ORB",
    debug=False,
    roi_margin=30,
) -> Tuple[float, str]:
    """
    Calculate scaling factor with proper unit handling.
    
    :param target_image: Input image (numpy array)
    :param reference_obj_size: Known size of reference object
    :param reference_unit: Unit of reference object size ("mm" or "inches")
    :param output_unit: Desired unit for scaling factor ("mm" or "inches")
    :param feature_detector: Feature detector to use ("ORB" or "SIFT")
    :param debug: Enable debug output
    :param roi_margin: ROI margin in pixels
    :return: Tuple of (scaling_factor, unit_string)
    """
    # Convert reference size to mm for internal calculation
    reference_size_mm = convert_units(reference_obj_size, reference_unit, "mm")
    
    # Calculate scaling factor in mm/px
    scaling_factor_mm = calculate_scaling_factor(
        target_image=target_image,
        reference_obj_size_mm=reference_size_mm,
        feature_detector=feature_detector,
        debug=debug,
        roi_margin=roi_margin,
    )
    
    # Convert scaling factor to desired output unit
    if output_unit == "inches":
        scaling_factor = scaling_factor_mm / 25.4  # Convert mm/px to inches/px
        unit_string = "inches per pixel"
    else:
        scaling_factor = scaling_factor_mm
        unit_string = "mm per pixel"
    
    print(f"Final scaling factor: {scaling_factor:.6f} {unit_string}")
    
    return scaling_factor, unit_string


# Paper size configurations (in mm and inches)
PAPER_SIZES = {
    "A4": {"width_mm": 210, "height_mm": 297, "width_inches": 8.27, "height_inches": 11.69},
    "A3": {"width_mm": 297, "height_mm": 420, "width_inches": 11.69, "height_inches": 16.54},
    "US Letter": {"width_mm": 215.9, "height_mm": 279.4, "width_inches": 8.5, "height_inches": 11.0}
}



def calculate_paper_scaling_factor(
    paper_contour: np.ndarray, 
    paper_size: str, 
    output_unit: str = "mm"
) -> Tuple[float, str]:
    """
    Calculate scaling factor based on detected paper dimensions with proper unit handling.
    Includes empirical correction factor for improved accuracy.
    
    :param paper_contour: Detected paper contour
    :param paper_size: Paper size identifier ("A4", "A3", "US Letter")
    :param output_unit: Desired unit for scaling factor ("mm" or "inches")
    :return: Tuple of (scaling_factor, unit_string)
    """
    # Empirical correction factor based on measurement analysis
    # Your measurements show DXF is ~79% of original size, so we need to reduce scaling by this factor
    CORRECTION_FACTOR = 0.79  # Adjust this value if needed based on more measurements
    
    # Get paper dimensions in the desired unit
    if output_unit == "inches":
        expected_width = PAPER_SIZES[paper_size]["width_inches"]
        expected_height = PAPER_SIZES[paper_size]["height_inches"]
        unit_string = "inches per pixel"
    else:
        expected_width = PAPER_SIZES[paper_size]["width_mm"]
        expected_height = PAPER_SIZES[paper_size]["height_mm"]
        unit_string = "mm per pixel"
    
    # Calculate bounding rectangle of paper contour
    rect = cv2.boundingRect(paper_contour)
    detected_width_px = rect[2]
    detected_height_px = rect[3]
    
    # Calculate scaling factors for both dimensions
    scale_x = expected_width / detected_width_px
    scale_y = expected_height / detected_height_px
    
    # Try different approaches to find the best scaling factor
    
    # Method 1: Use minimum scale (your current approach)
    scaling_factor_min = min(scale_x, scale_y)
    
    # Method 2: Use average scale (often more accurate for real-world images)
    scaling_factor_avg = (scale_x + scale_y) / 2
    
    # Method 3: Use aspect ratio to determine orientation and pick appropriate scale
    detected_aspect_ratio = detected_width_px / detected_height_px
    expected_aspect_ratio = expected_width / expected_height
    
    if abs(detected_aspect_ratio - expected_aspect_ratio) < abs(detected_aspect_ratio - (1/expected_aspect_ratio)):
        # Same orientation
        scaling_factor_oriented = (scale_x + scale_y) / 2
    else:
        # Rotated 90 degrees
        scale_x_rot = expected_height / detected_width_px
        scale_y_rot = expected_width / detected_height_px
        scaling_factor_oriented = (scale_x_rot + scale_y_rot) / 2
    
    # Choose the best method (you can experiment with different methods)
    base_scaling_factor = scaling_factor_avg  # Changed from min to avg
    
    # Apply correction factor
    scaling_factor = base_scaling_factor * CORRECTION_FACTOR
    
    print(f"Paper detection: {detected_width_px}x{detected_height_px} px")
    print(f"Expected paper size: {expected_width}x{expected_height} {output_unit}")
    print(f"Scale X: {scale_x:.6f}, Scale Y: {scale_y:.6f}")
    print(f"Base scaling (avg): {base_scaling_factor:.6f}")
    print(f"Correction factor: {CORRECTION_FACTOR}")
    print(f"Final scaling factor: {scaling_factor:.6f} {unit_string}")
    
    return scaling_factor, unit_string
    
def calculate_paper_scaling_factor_corrected(
    paper_contour: np.ndarray, 
    paper_size: str, 
    output_unit: str = "mm",
    correction_factor: float = 0.79,
    method: str = "average"
) -> Tuple[float, str]:
    """
    Calculate scaling factor with configurable correction and method.
    
    :param paper_contour: Detected paper contour
    :param paper_size: Paper size identifier ("A4", "A3", "US Letter")
    :param output_unit: Desired unit for scaling factor ("mm" or "inches")
    :param correction_factor: Empirical correction factor (default 0.79)
    :param method: Calculation method ("min", "max", "average", "auto")
    :return: Tuple of (scaling_factor, unit_string)
    """
    # Get paper dimensions in the desired unit
    if output_unit == "inches":
        expected_width = PAPER_SIZES[paper_size]["width_inches"]
        expected_height = PAPER_SIZES[paper_size]["height_inches"]
        unit_string = "inches per pixel"
    else:
        expected_width = PAPER_SIZES[paper_size]["width_mm"]
        expected_height = PAPER_SIZES[paper_size]["height_mm"]
        unit_string = "mm per pixel"
    
    # Calculate bounding rectangle of paper contour
    rect = cv2.boundingRect(paper_contour)
    detected_width_px = rect[2]
    detected_height_px = rect[3]
    
    # Calculate scaling factors for both dimensions
    scale_x = expected_width / detected_width_px
    scale_y = expected_height / detected_height_px
    
    # Choose scaling method
    if method == "min":
        base_scaling_factor = min(scale_x, scale_y)
    elif method == "max":
        base_scaling_factor = max(scale_x, scale_y)
    elif method == "average":
        base_scaling_factor = (scale_x + scale_y) / 2
    elif method == "auto":
        # Auto-select based on aspect ratio similarity
        detected_aspect = detected_width_px / detected_height_px
        expected_aspect = expected_width / expected_height
        
        # If aspect ratios are similar, use average; otherwise use method that matches better
        aspect_diff = abs(detected_aspect - expected_aspect)
        aspect_diff_inv = abs(detected_aspect - (1/expected_aspect))
        
        if aspect_diff < aspect_diff_inv:
            base_scaling_factor = (scale_x + scale_y) / 2  # Same orientation
        else:
            # Different orientation - swap and recalculate
            scale_x_swap = expected_height / detected_width_px
            scale_y_swap = expected_width / detected_height_px
            base_scaling_factor = (scale_x_swap + scale_y_swap) / 2
    else:
        raise ValueError(f"Unknown method: {method}")
    
    # Apply correction factor
    scaling_factor = base_scaling_factor * correction_factor
    
    print(f"Paper detection: {detected_width_px}x{detected_height_px} px")
    print(f"Expected paper size: {expected_width}x{expected_height} {output_unit}")
    print(f"Scale X: {scale_x:.6f}, Scale Y: {scale_y:.6f}")
    print(f"Method: {method}, Base scaling: {base_scaling_factor:.6f}")
    print(f"Correction factor: {correction_factor}")
    print(f"Final scaling factor: {scaling_factor:.6f} {unit_string}")
    
    return scaling_factor, unit_string

# Example usage:
if __name__ == "__main__":
    import os
    from PIL import Image
    
    # Test with different units
    sample_dir = "./sample_images"
    if os.path.exists(sample_dir):
        for idx, file in enumerate(os.listdir(sample_dir)):
            if file.lower().endswith(('.jpg', '.jpeg', '.png')):
                img_path = os.path.join(sample_dir, file)
                img = np.array(Image.open(img_path))
                
                # Convert to grayscale if needed
                if len(img.shape) == 3:
                    img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
                else:
                    img_gray = img
                
                print(f"\nProcessing: {file}")
                
                try:
                    # Test with mm units
                    scaling_factor_mm, unit_mm = calculate_scaling_factor_with_units(
                        target_image=img_gray,
                        reference_obj_size=20.0,  # 20mm reference object
                        reference_unit="mm",
                        output_unit="mm",
                        feature_detector="ORB",
                        debug=False,
                        roi_margin=90,
                    )
                    
                    # Test with inch units
                    scaling_factor_inch, unit_inch = calculate_scaling_factor_with_units(
                        target_image=img_gray,
                        reference_obj_size=0.787,  # ~20mm in inches
                        reference_unit="inches",
                        output_unit="inches",
                        feature_detector="ORB",
                        debug=False,
                        roi_margin=90,
                    )
                    
                    print(f"MM scaling: {scaling_factor_mm:.6f} {unit_mm}")
                    print(f"Inch scaling: {scaling_factor_inch:.6f} {unit_inch}")
                    
                    # Verify conversion consistency
                    converted_mm_to_inch = scaling_factor_mm / 25.4
                    print(f"Converted mm to inch: {converted_mm_to_inch:.6f}")
                    print(f"Difference: {abs(scaling_factor_inch - converted_mm_to_inch):.8f}")
                    
                except Exception as e:
                    print(f"Error processing {file}: {e}")
    else:
        print(f"Sample directory {sample_dir} not found")