Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,1021 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
from pathlib import Path
|
3 |
from typing import List, Union
|
@@ -53,36 +1071,86 @@ class FingerCutOverlapError(Exception):
|
|
53 |
def __init__(self, message="There was an overlap with fingercuts... Please try again to generate dxf."):
|
54 |
super().__init__(message)
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
if not os.path.exists(reference_model_path):
|
63 |
-
shutil.copy("best1.pt", reference_model_path)
|
64 |
-
reference_detector_global = YOLO(reference_model_path)
|
65 |
|
66 |
-
#
|
|
|
67 |
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
|
68 |
-
if not os.path.exists(u2net_model_path):
|
69 |
-
shutil.copy("u2netp.pth", u2net_model_path)
|
70 |
-
u2net_global = U2NETP(3, 1)
|
71 |
-
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
|
72 |
|
73 |
-
#
|
74 |
-
|
75 |
-
|
76 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
device = "cpu"
|
79 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
80 |
|
81 |
# Move models to device
|
82 |
-
u2net_global.to(device)
|
83 |
-
u2net_global.eval()
|
84 |
-
birefnet.to(device)
|
85 |
-
birefnet.eval()
|
86 |
|
87 |
# Define transforms
|
88 |
transform_image = transforms.Compose([
|
@@ -91,45 +1159,11 @@ transform_image = transforms.Compose([
|
|
91 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
92 |
])
|
93 |
|
94 |
-
# Language translations dictionary remains unchanged
|
95 |
-
TRANSLATIONS = {
|
96 |
-
"english": {
|
97 |
-
"input_image": "Input Image",
|
98 |
-
"offset_value": "Offset value",
|
99 |
-
"offset_unit": "Offset unit (mm/in)",
|
100 |
-
"enable_finger": "Enable Finger Clearance",
|
101 |
-
"edge_radius": "Edge rounding radius (mm)",
|
102 |
-
"output_image": "Output Image",
|
103 |
-
"outlines": "Outlines of Objects",
|
104 |
-
"dxf_file": "DXF file",
|
105 |
-
"mask": "Mask",
|
106 |
-
"enable_radius": "Enable Edge Rounding",
|
107 |
-
"radius_disabled": "Rounding Disabled",
|
108 |
-
"scaling_factor": "Scaling Factor(mm)",
|
109 |
-
"scaling_placeholder": "Every pixel is equal to mentioned number in millimeters",
|
110 |
-
"language_selector": "Select Language",
|
111 |
-
},
|
112 |
-
"dutch": {
|
113 |
-
"input_image": "Invoer Afbeelding",
|
114 |
-
"offset_value": "Offset waarde",
|
115 |
-
"offset_unit": "Offset unit (mm/inch)",
|
116 |
-
"enable_finger": "Finger Clearance inschakelen",
|
117 |
-
"edge_radius": "Ronding radius rand (mm)",
|
118 |
-
"output_image": "Uitvoer Afbeelding",
|
119 |
-
"outlines": "Contouren van Objecten",
|
120 |
-
"dxf_file": "DXF bestand",
|
121 |
-
"mask": "Masker",
|
122 |
-
"enable_radius": "Ronding inschakelen",
|
123 |
-
"radius_disabled": "Ronding uitgeschakeld",
|
124 |
-
"scaling_factor": "Schalingsfactor(mm)",
|
125 |
-
"scaling_placeholder": "Elke pixel is gelijk aan genoemd aantal in millimeters",
|
126 |
-
"language_selector": "Selecteer Taal",
|
127 |
-
}
|
128 |
-
}
|
129 |
-
|
130 |
def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
|
131 |
"""Remove background using U2NETP model specifically for reference objects"""
|
132 |
try:
|
|
|
|
|
133 |
image_pil = Image.fromarray(image)
|
134 |
transform_u2netp = transforms.Compose([
|
135 |
transforms.Resize((320, 320)),
|
@@ -140,7 +1174,7 @@ def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
|
|
140 |
input_tensor = transform_u2netp(image_pil).unsqueeze(0).to(device)
|
141 |
|
142 |
with torch.no_grad():
|
143 |
-
outputs =
|
144 |
|
145 |
pred = outputs[0]
|
146 |
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
|
@@ -156,11 +1190,13 @@ def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
|
|
156 |
def remove_bg(image: np.ndarray) -> np.ndarray:
|
157 |
"""Remove background using BiRefNet model for main objects"""
|
158 |
try:
|
|
|
|
|
159 |
image = Image.fromarray(image)
|
160 |
input_images = transform_image(image).unsqueeze(0).to(device)
|
161 |
|
162 |
with torch.no_grad():
|
163 |
-
preds =
|
164 |
pred = preds[0].squeeze()
|
165 |
|
166 |
pred_pil: Image = transforms.ToPILImage()(pred)
|
@@ -213,7 +1249,9 @@ def make_square(img: np.ndarray):
|
|
213 |
def detect_reference_square(img) -> tuple:
|
214 |
"""Detect reference square in the image and ignore other coins"""
|
215 |
try:
|
216 |
-
|
|
|
|
|
217 |
if not res or len(res) == 0 or len(res[0].boxes) == 0:
|
218 |
raise ReferenceBoxNotDetectedError("Unable to detect the reference coin in the image.")
|
219 |
|
@@ -241,6 +1279,12 @@ def detect_reference_square(img) -> tuple:
|
|
241 |
raise
|
242 |
|
243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
def exclude_scaling_box(
|
245 |
image: np.ndarray,
|
246 |
bbox: np.ndarray,
|
@@ -695,10 +1739,28 @@ def round_edges(mask: np.ndarray, radius_mm: float, scaling_factor: float) -> np
|
|
695 |
|
696 |
return rounded
|
697 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
698 |
|
699 |
def predict_og(image, offset, offset_unit, edge_radius, finger_clearance=False):
|
700 |
-
print(f"DEBUG: Image shape: {image.shape}, dtype: {image.dtype}, range: {image.min()}-{image.max()}")
|
701 |
-
|
702 |
coin_size_mm = 20.0
|
703 |
|
704 |
if offset_unit == "inches":
|
@@ -750,7 +1812,8 @@ def predict_og(image, offset, offset_unit, edge_radius, finger_clearance=False):
|
|
750 |
processed_size = objects_mask.shape[:2]
|
751 |
|
752 |
# REMOVE ALL COINS from mask:
|
753 |
-
res = reference_detector_global.predict(image, conf=0.05)
|
|
|
754 |
boxes = res[0].cpu().boxes.xyxy if res and len(res) > 0 else []
|
755 |
|
756 |
for box in boxes:
|
@@ -764,34 +1827,25 @@ def predict_og(image, offset, offset_unit, edge_radius, finger_clearance=False):
|
|
764 |
|
765 |
objects_mask = resize_img(objects_mask, (image.shape[1], image.shape[0]))
|
766 |
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
# #if edge_radius > 0:
|
773 |
-
# # Use morphological rounding instead of contour-based
|
774 |
-
# rounded_mask = round_edges(objects_mask, edge_radius, scaling_factor)
|
775 |
-
# #else:
|
776 |
-
# #rounded_mask = objects_mask.copy()
|
777 |
-
|
778 |
-
# # Apply dilation AFTER rounding
|
779 |
-
# offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
|
780 |
-
# kernel = np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)
|
781 |
-
# dilated_mask = cv2.dilate(rounded_mask, kernel)
|
782 |
-
# Apply edge rounding first
|
783 |
-
rounded_mask = round_edges(objects_mask, edge_radius, scaling_factor)
|
784 |
|
|
|
|
|
|
|
|
|
|
|
|
|
785 |
# Apply dilation AFTER rounding
|
786 |
offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
|
787 |
kernel = np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
Image.fromarray(final_dilated_mask).save("./outputs/scaled_mask_original.jpg")
|
792 |
-
|
793 |
|
794 |
-
outlines, contours = extract_outlines(
|
795 |
|
796 |
try:
|
797 |
dxf, finger_polygons, original_polygons = save_dxf_spline(
|
@@ -806,7 +1860,7 @@ def predict_og(image, offset, offset_unit, edge_radius, finger_clearance=False):
|
|
806 |
shrunked_img_contours = image.copy()
|
807 |
|
808 |
if finger_clearance == "On":
|
809 |
-
outlines = np.full_like(
|
810 |
for poly in finger_polygons:
|
811 |
try:
|
812 |
coords = np.array([
|
@@ -820,15 +1874,16 @@ def predict_og(image, offset, offset_unit, edge_radius, finger_clearance=False):
|
|
820 |
logger.warning(f"Failed to draw finger cut: {e}")
|
821 |
continue
|
822 |
else:
|
823 |
-
outlines = np.full_like(
|
824 |
cv2.drawContours(shrunked_img_contours, contours, -1, 0, thickness=2)
|
825 |
cv2.drawContours(outlines, contours, -1, 0, thickness=2)
|
|
|
826 |
|
827 |
return (
|
828 |
shrunked_img_contours,
|
829 |
outlines,
|
830 |
dxf,
|
831 |
-
|
832 |
f"{scaling_factor:.4f}")
|
833 |
|
834 |
|
@@ -879,139 +1934,58 @@ def predict_full(image, enable_fillet, fillet_value_mm, enable_finger_cut):
|
|
879 |
|
880 |
|
881 |
|
882 |
-
|
883 |
-
def update_interface(language):
|
884 |
-
return [
|
885 |
-
gr.Image(label=TRANSLATIONS[language]["input_image"], type="numpy"),
|
886 |
-
gr.Row([
|
887 |
-
gr.Number(label=TRANSLATIONS[language]["offset_value"], value=0),
|
888 |
-
gr.Dropdown(["mm", "inches"], value="mm",
|
889 |
-
label=TRANSLATIONS[language]["offset_unit"])
|
890 |
-
]),
|
891 |
-
gr.Slider(minimum=0,maximum=20,step=1,value=5,label=TRANSLATIONS[language]["edge_radius"],visible=False,interactive=True),
|
892 |
-
gr.Radio(choices=["On", "Off"],value="Off",label=TRANSLATIONS[language]["enable_radius"],),
|
893 |
-
gr.Image(label=TRANSLATIONS[language]["output_image"]),
|
894 |
-
gr.Image(label=TRANSLATIONS[language]["outlines"]),
|
895 |
-
gr.File(label=TRANSLATIONS[language]["dxf_file"]),
|
896 |
-
gr.Image(label=TRANSLATIONS[language]["mask"]),
|
897 |
-
gr.Textbox(label=TRANSLATIONS[language]["scaling_factor"],placeholder=TRANSLATIONS[language]["scaling_placeholder"],),
|
898 |
-
]
|
899 |
-
|
900 |
if __name__ == "__main__":
|
901 |
os.makedirs("./outputs", exist_ok=True)
|
902 |
|
903 |
with gr.Blocks() as demo:
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
label="Select Language",
|
908 |
-
interactive=True
|
909 |
-
)
|
910 |
-
|
911 |
-
input_image = gr.Image(label=TRANSLATIONS["english"]["input_image"], type="numpy")
|
912 |
-
|
913 |
-
with gr.Row():
|
914 |
-
offset = gr.Number(label=TRANSLATIONS["english"]["offset_value"], value=0)
|
915 |
-
offset_unit = gr.Dropdown([
|
916 |
-
"mm", "inches"
|
917 |
-
], value="mm", label=TRANSLATIONS["english"]["offset_unit"])
|
918 |
-
|
919 |
-
finger_toggle = gr.Radio(
|
920 |
choices=["On", "Off"],
|
921 |
value="Off",
|
922 |
-
label=
|
|
|
923 |
)
|
924 |
-
|
925 |
-
|
926 |
minimum=0,
|
927 |
maximum=20,
|
928 |
step=1,
|
929 |
value=5,
|
930 |
-
label=
|
931 |
visible=False,
|
932 |
interactive=True
|
933 |
)
|
934 |
-
|
935 |
-
|
936 |
choices=["On", "Off"],
|
937 |
value="Off",
|
938 |
-
label=
|
939 |
-
interactive=True
|
940 |
)
|
941 |
|
942 |
-
def
|
943 |
if choice == "On":
|
944 |
return gr.Slider(visible=True)
|
945 |
return gr.Slider(visible=False, value=0)
|
946 |
|
947 |
-
|
948 |
-
fn=
|
949 |
-
inputs=
|
950 |
-
outputs=
|
951 |
-
)
|
952 |
-
|
953 |
-
output_image = gr.Image(label=TRANSLATIONS["english"]["output_image"])
|
954 |
-
outlines = gr.Image(label=TRANSLATIONS["english"]["outlines"])
|
955 |
-
dxf_file = gr.File(label=TRANSLATIONS["english"]["dxf_file"])
|
956 |
-
mask = gr.Image(label=TRANSLATIONS["english"]["mask"])
|
957 |
-
|
958 |
-
scaling = gr.Textbox(
|
959 |
-
label=TRANSLATIONS["english"]["scaling_factor"],
|
960 |
-
placeholder=TRANSLATIONS["english"]["scaling_placeholder"]
|
961 |
)
|
|
|
|
|
|
|
|
|
|
|
962 |
|
963 |
submit_btn = gr.Button("Submit")
|
964 |
|
965 |
-
language.change(
|
966 |
-
fn=lambda x: [
|
967 |
-
gr.update(label=TRANSLATIONS[x]["input_image"]),
|
968 |
-
gr.update(label=TRANSLATIONS[x]["offset_value"]),
|
969 |
-
gr.update(label=TRANSLATIONS[x]["offset_unit"]),
|
970 |
-
gr.update(label=TRANSLATIONS[x]["output_image"]),
|
971 |
-
gr.update(label=TRANSLATIONS[x]["outlines"]),
|
972 |
-
gr.update(label=TRANSLATIONS[x]["enable_finger"]),
|
973 |
-
gr.update(label=TRANSLATIONS[x]["dxf_file"]),
|
974 |
-
gr.update(label=TRANSLATIONS[x]["mask"]),
|
975 |
-
gr.update(label=TRANSLATIONS[x]["enable_radius"]),
|
976 |
-
gr.update(label=TRANSLATIONS[x]["edge_radius"]),
|
977 |
-
gr.update(
|
978 |
-
label=TRANSLATIONS[x]["scaling_factor"],
|
979 |
-
placeholder=TRANSLATIONS[x]["scaling_placeholder"]
|
980 |
-
),
|
981 |
-
],
|
982 |
-
inputs=[language],
|
983 |
-
outputs=[
|
984 |
-
input_image, offset, offset_unit,
|
985 |
-
output_image, outlines, finger_toggle, dxf_file,
|
986 |
-
mask, radius_toggle, edge_radius, scaling
|
987 |
-
]
|
988 |
-
)
|
989 |
|
990 |
-
def custom_predict_and_format(*args):
|
991 |
-
output_image, outlines, dxf_path, mask, scaling = predict_og(*args)
|
992 |
-
if output_image is None:
|
993 |
-
return (
|
994 |
-
None, None, None, None, "Reference coin not detected!"
|
995 |
-
)
|
996 |
-
return (
|
997 |
-
output_image, outlines, dxf_path, mask, scaling
|
998 |
-
)
|
999 |
-
|
1000 |
submit_btn.click(
|
1001 |
-
fn=
|
1002 |
-
inputs=[input_image,
|
1003 |
-
outputs=[output_image, outlines, dxf_file, mask
|
1004 |
-
)
|
1005 |
-
|
1006 |
-
|
1007 |
-
gr.Examples(
|
1008 |
-
examples=[
|
1009 |
-
["./examples/Test20.jpg", 0, "mm"],
|
1010 |
-
["./examples/Test21.jpg", 0, "mm"],
|
1011 |
-
["./examples/Test22.jpg", 0, "mm"],
|
1012 |
-
["./examples/Test23.jpg", 0, "mm"],
|
1013 |
-
],
|
1014 |
-
inputs=[input_image, offset, offset_unit]
|
1015 |
)
|
1016 |
|
1017 |
demo.launch(share=True)
|
|
|
1 |
+
# import os
|
2 |
+
# from pathlib import Path
|
3 |
+
# from typing import List, Union
|
4 |
+
# from PIL import Image
|
5 |
+
# import ezdxf.units
|
6 |
+
# import numpy as np
|
7 |
+
# import torch
|
8 |
+
# from torchvision import transforms
|
9 |
+
# from ultralytics import YOLOWorld, YOLO
|
10 |
+
# from ultralytics.engine.results import Results
|
11 |
+
# from ultralytics.utils.plotting import save_one_box
|
12 |
+
# from transformers import AutoModelForImageSegmentation
|
13 |
+
# import cv2
|
14 |
+
# import ezdxf
|
15 |
+
# import gradio as gr
|
16 |
+
# import gc
|
17 |
+
# from scalingtestupdated import calculate_scaling_factor
|
18 |
+
# from scipy.interpolate import splprep, splev
|
19 |
+
# from scipy.ndimage import gaussian_filter1d
|
20 |
+
# import json
|
21 |
+
# import time
|
22 |
+
# import signal
|
23 |
+
# from shapely.ops import unary_union
|
24 |
+
# from shapely.geometry import MultiPolygon, GeometryCollection, Polygon, Point
|
25 |
+
# from u2netp import U2NETP # Add U2NETP import
|
26 |
+
# import logging
|
27 |
+
# import shutil
|
28 |
+
|
29 |
+
# # Initialize logging
|
30 |
+
# logging.basicConfig(level=logging.INFO)
|
31 |
+
# logger = logging.getLogger(__name__)
|
32 |
+
|
33 |
+
# # Create cache directory for models
|
34 |
+
# CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache")
|
35 |
+
# os.makedirs(CACHE_DIR, exist_ok=True)
|
36 |
+
|
37 |
+
# # Custom Exception Classes
|
38 |
+
# class TimeoutReachedError(Exception):
|
39 |
+
# pass
|
40 |
+
|
41 |
+
# class BoundaryOverlapError(Exception):
|
42 |
+
# pass
|
43 |
+
|
44 |
+
# class TextOverlapError(Exception):
|
45 |
+
# pass
|
46 |
+
|
47 |
+
# class ReferenceBoxNotDetectedError(Exception):
|
48 |
+
# """Raised when the Reference coin cannot be detected in the image"""
|
49 |
+
# pass
|
50 |
+
|
51 |
+
# class FingerCutOverlapError(Exception):
|
52 |
+
# """Raised when finger cuts overlap with existing geometry"""
|
53 |
+
# def __init__(self, message="There was an overlap with fingercuts... Please try again to generate dxf."):
|
54 |
+
# super().__init__(message)
|
55 |
+
|
56 |
+
# # Global model initialization
|
57 |
+
# print("Loading models...")
|
58 |
+
# start_time = time.time()
|
59 |
+
|
60 |
+
# # Load YOLO reference model
|
61 |
+
# reference_model_path = os.path.join("", "best1.pt")
|
62 |
+
# if not os.path.exists(reference_model_path):
|
63 |
+
# shutil.copy("best1.pt", reference_model_path)
|
64 |
+
# reference_detector_global = YOLO(reference_model_path)
|
65 |
+
|
66 |
+
# # Load U2NETP model
|
67 |
+
# u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
|
68 |
+
# if not os.path.exists(u2net_model_path):
|
69 |
+
# shutil.copy("u2netp.pth", u2net_model_path)
|
70 |
+
# u2net_global = U2NETP(3, 1)
|
71 |
+
# u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
|
72 |
+
|
73 |
+
# # Load BiRefNet model
|
74 |
+
# birefnet = AutoModelForImageSegmentation.from_pretrained(
|
75 |
+
# "zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
|
76 |
+
# )
|
77 |
+
|
78 |
+
# device = "cpu"
|
79 |
+
# torch.set_float32_matmul_precision(["high", "highest"][0])
|
80 |
+
|
81 |
+
# # Move models to device
|
82 |
+
# u2net_global.to(device)
|
83 |
+
# u2net_global.eval()
|
84 |
+
# birefnet.to(device)
|
85 |
+
# birefnet.eval()
|
86 |
+
|
87 |
+
# # Define transforms
|
88 |
+
# transform_image = transforms.Compose([
|
89 |
+
# transforms.Resize((1024, 1024)),
|
90 |
+
# transforms.ToTensor(),
|
91 |
+
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
92 |
+
# ])
|
93 |
+
|
94 |
+
# # Language translations dictionary remains unchanged
|
95 |
+
# TRANSLATIONS = {
|
96 |
+
# "english": {
|
97 |
+
# "input_image": "Input Image",
|
98 |
+
# "offset_value": "Offset value",
|
99 |
+
# "offset_unit": "Offset unit (mm/in)",
|
100 |
+
# "enable_finger": "Enable Finger Clearance",
|
101 |
+
# "edge_radius": "Edge rounding radius (mm)",
|
102 |
+
# "output_image": "Output Image",
|
103 |
+
# "outlines": "Outlines of Objects",
|
104 |
+
# "dxf_file": "DXF file",
|
105 |
+
# "mask": "Mask",
|
106 |
+
# "enable_radius": "Enable Edge Rounding",
|
107 |
+
# "radius_disabled": "Rounding Disabled",
|
108 |
+
# "scaling_factor": "Scaling Factor(mm)",
|
109 |
+
# "scaling_placeholder": "Every pixel is equal to mentioned number in millimeters",
|
110 |
+
# "language_selector": "Select Language",
|
111 |
+
# },
|
112 |
+
# "dutch": {
|
113 |
+
# "input_image": "Invoer Afbeelding",
|
114 |
+
# "offset_value": "Offset waarde",
|
115 |
+
# "offset_unit": "Offset unit (mm/inch)",
|
116 |
+
# "enable_finger": "Finger Clearance inschakelen",
|
117 |
+
# "edge_radius": "Ronding radius rand (mm)",
|
118 |
+
# "output_image": "Uitvoer Afbeelding",
|
119 |
+
# "outlines": "Contouren van Objecten",
|
120 |
+
# "dxf_file": "DXF bestand",
|
121 |
+
# "mask": "Masker",
|
122 |
+
# "enable_radius": "Ronding inschakelen",
|
123 |
+
# "radius_disabled": "Ronding uitgeschakeld",
|
124 |
+
# "scaling_factor": "Schalingsfactor(mm)",
|
125 |
+
# "scaling_placeholder": "Elke pixel is gelijk aan genoemd aantal in millimeters",
|
126 |
+
# "language_selector": "Selecteer Taal",
|
127 |
+
# }
|
128 |
+
# }
|
129 |
+
|
130 |
+
# def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
|
131 |
+
# """Remove background using U2NETP model specifically for reference objects"""
|
132 |
+
# try:
|
133 |
+
# image_pil = Image.fromarray(image)
|
134 |
+
# transform_u2netp = transforms.Compose([
|
135 |
+
# transforms.Resize((320, 320)),
|
136 |
+
# transforms.ToTensor(),
|
137 |
+
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
138 |
+
# ])
|
139 |
+
|
140 |
+
# input_tensor = transform_u2netp(image_pil).unsqueeze(0).to(device)
|
141 |
+
|
142 |
+
# with torch.no_grad():
|
143 |
+
# outputs = u2net_global(input_tensor)
|
144 |
+
|
145 |
+
# pred = outputs[0]
|
146 |
+
# pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
|
147 |
+
# pred_np = pred.squeeze().cpu().numpy()
|
148 |
+
# pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
|
149 |
+
# pred_np = (pred_np * 255).astype(np.uint8)
|
150 |
+
|
151 |
+
# return pred_np
|
152 |
+
# except Exception as e:
|
153 |
+
# logger.error(f"Error in U2NETP background removal: {e}")
|
154 |
+
# raise
|
155 |
+
|
156 |
+
# def remove_bg(image: np.ndarray) -> np.ndarray:
|
157 |
+
# """Remove background using BiRefNet model for main objects"""
|
158 |
+
# try:
|
159 |
+
# image = Image.fromarray(image)
|
160 |
+
# input_images = transform_image(image).unsqueeze(0).to(device)
|
161 |
+
|
162 |
+
# with torch.no_grad():
|
163 |
+
# preds = birefnet(input_images)[-1].sigmoid().cpu()
|
164 |
+
# pred = preds[0].squeeze()
|
165 |
+
|
166 |
+
# pred_pil: Image = transforms.ToPILImage()(pred)
|
167 |
+
|
168 |
+
# scale_ratio = 1024 / max(image.size)
|
169 |
+
# scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio))
|
170 |
+
|
171 |
+
# return np.array(pred_pil.resize(scaled_size))
|
172 |
+
# except Exception as e:
|
173 |
+
# logger.error(f"Error in BiRefNet background removal: {e}")
|
174 |
+
# raise
|
175 |
+
|
176 |
+
# def resize_img(img: np.ndarray, resize_dim):
|
177 |
+
# return np.array(Image.fromarray(img).resize(resize_dim))
|
178 |
+
|
179 |
+
# def make_square(img: np.ndarray):
|
180 |
+
# """Make the image square by padding"""
|
181 |
+
# height, width = img.shape[:2]
|
182 |
+
# max_dim = max(height, width)
|
183 |
+
|
184 |
+
# pad_height = (max_dim - height) // 2
|
185 |
+
# pad_width = (max_dim - width) // 2
|
186 |
+
|
187 |
+
# pad_height_extra = max_dim - height - 2 * pad_height
|
188 |
+
# pad_width_extra = max_dim - width - 2 * pad_width
|
189 |
+
|
190 |
+
# if len(img.shape) == 3: # Color image
|
191 |
+
# padded = np.pad(
|
192 |
+
# img,
|
193 |
+
# (
|
194 |
+
# (pad_height, pad_height + pad_height_extra),
|
195 |
+
# (pad_width, pad_width + pad_width_extra),
|
196 |
+
# (0, 0),
|
197 |
+
# ),
|
198 |
+
# mode="edge",
|
199 |
+
# )
|
200 |
+
# else: # Grayscale image
|
201 |
+
# padded = np.pad(
|
202 |
+
# img,
|
203 |
+
# (
|
204 |
+
# (pad_height, pad_height + pad_height_extra),
|
205 |
+
# (pad_width, pad_width + pad_width_extra),
|
206 |
+
# ),
|
207 |
+
# mode="edge",
|
208 |
+
# )
|
209 |
+
|
210 |
+
# return padded
|
211 |
+
|
212 |
+
|
213 |
+
# def detect_reference_square(img) -> tuple:
|
214 |
+
# """Detect reference square in the image and ignore other coins"""
|
215 |
+
# try:
|
216 |
+
# res = reference_detector_global.predict(img, conf=0.75)
|
217 |
+
# if not res or len(res) == 0 or len(res[0].boxes) == 0:
|
218 |
+
# raise ReferenceBoxNotDetectedError("Unable to detect the reference coin in the image.")
|
219 |
+
|
220 |
+
# # Get all detected boxes
|
221 |
+
# boxes = res[0].cpu().boxes.xyxy
|
222 |
+
|
223 |
+
# # Find the largest box (most likely the reference coin)
|
224 |
+
# largest_box = None
|
225 |
+
# max_area = 0
|
226 |
+
# for box in boxes:
|
227 |
+
# x_min, y_min, x_max, y_max = box
|
228 |
+
# area = (x_max - x_min) * (y_max - y_min)
|
229 |
+
# if area > max_area:
|
230 |
+
# max_area = area
|
231 |
+
# largest_box = box
|
232 |
+
|
233 |
+
# return (
|
234 |
+
# save_one_box(largest_box.unsqueeze(0), img, save=False),
|
235 |
+
# largest_box
|
236 |
+
# )
|
237 |
+
# except Exception as e:
|
238 |
+
# if not isinstance(e, ReferenceBoxNotDetectedError):
|
239 |
+
# logger.error(f"Error in reference square detection: {e}")
|
240 |
+
# raise ReferenceBoxNotDetectedError("Error detecting reference coin. Please try again with a clearer image.")
|
241 |
+
# raise
|
242 |
+
|
243 |
+
|
244 |
+
# def exclude_scaling_box(
|
245 |
+
# image: np.ndarray,
|
246 |
+
# bbox: np.ndarray,
|
247 |
+
# orig_size: tuple,
|
248 |
+
# processed_size: tuple,
|
249 |
+
# expansion_factor: float = 1.2,
|
250 |
+
# ) -> np.ndarray:
|
251 |
+
# x_min, y_min, x_max, y_max = map(int, bbox)
|
252 |
+
# scale_x = processed_size[1] / orig_size[1]
|
253 |
+
# scale_y = processed_size[0] / orig_size[0]
|
254 |
+
|
255 |
+
# x_min = int(x_min * scale_x)
|
256 |
+
# x_max = int(x_max * scale_x)
|
257 |
+
# y_min = int(y_min * scale_y)
|
258 |
+
# y_max = int(y_max * scale_y)
|
259 |
+
|
260 |
+
# box_width = x_max - x_min
|
261 |
+
# box_height = y_max - y_min
|
262 |
+
|
263 |
+
# expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
|
264 |
+
# expanded_x_max = min(
|
265 |
+
# image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2)
|
266 |
+
# )
|
267 |
+
# expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
|
268 |
+
# expanded_y_max = min(
|
269 |
+
# image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2)
|
270 |
+
# )
|
271 |
+
|
272 |
+
# image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
|
273 |
+
# return image
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
|
278 |
+
|
279 |
+
# def resample_contour(contour, edge_radius_px: int = 0):
|
280 |
+
# """Resample contour with radius-aware smoothing and periodic handling."""
|
281 |
+
# logger.info(f"Starting resample_contour with contour of shape {contour.shape}")
|
282 |
+
|
283 |
+
# num_points = 1500
|
284 |
+
# sigma = max(2, int(edge_radius_px) // 4) # Adjust sigma based on radius
|
285 |
+
|
286 |
+
# if len(contour) < 4: # Need at least 4 points for spline with periodic condition
|
287 |
+
# error_msg = f"Contour must have at least 4 points, but has {len(contour)} points."
|
288 |
+
# logger.error(error_msg)
|
289 |
+
# raise ValueError(error_msg)
|
290 |
+
|
291 |
+
# try:
|
292 |
+
# contour = contour[:, 0, :]
|
293 |
+
# logger.debug(f"Reshaped contour to shape {contour.shape}")
|
294 |
+
|
295 |
+
# # Ensure contour is closed by making start and end points the same
|
296 |
+
# if not np.array_equal(contour[0], contour[-1]):
|
297 |
+
# contour = np.vstack([contour, contour[0]])
|
298 |
+
|
299 |
+
# # Create periodic spline representation
|
300 |
+
# tck, u = splprep(contour.T, u=None, s=0, per=True)
|
301 |
+
|
302 |
+
# # Evaluate spline at evenly spaced points
|
303 |
+
# u_new = np.linspace(u.min(), u.max(), num_points)
|
304 |
+
# x_new, y_new = splev(u_new, tck, der=0)
|
305 |
+
|
306 |
+
# # Apply Gaussian smoothing with wrap-around
|
307 |
+
# if sigma > 0:
|
308 |
+
# x_new = gaussian_filter1d(x_new, sigma=sigma, mode='wrap')
|
309 |
+
# y_new = gaussian_filter1d(y_new, sigma=sigma, mode='wrap')
|
310 |
+
|
311 |
+
# # Re-close the contour after smoothing
|
312 |
+
# x_new[-1] = x_new[0]
|
313 |
+
# y_new[-1] = y_new[0]
|
314 |
+
|
315 |
+
# result = np.array([x_new, y_new]).T
|
316 |
+
# logger.info(f"Completed resample_contour with result shape {result.shape}")
|
317 |
+
# return result
|
318 |
+
|
319 |
+
# except Exception as e:
|
320 |
+
# logger.error(f"Error in resample_contour: {e}")
|
321 |
+
# raise
|
322 |
+
|
323 |
+
|
324 |
+
|
325 |
+
|
326 |
+
|
327 |
+
|
328 |
+
# # def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
|
329 |
+
# # doc = ezdxf.new(units=ezdxf.units.MM)
|
330 |
+
# # doc.header["$INSUNITS"] = ezdxf.units.MM
|
331 |
+
# # msp = doc.modelspace()
|
332 |
+
# # final_polygons_inch = []
|
333 |
+
# # finger_centers = []
|
334 |
+
# # original_polygons = []
|
335 |
+
|
336 |
+
# # for contour in inflated_contours:
|
337 |
+
# # try:
|
338 |
+
# # # Removed the second parameter since it was causing the error
|
339 |
+
# # resampled_contour = resample_contour(contour)
|
340 |
+
|
341 |
+
# # points_inch = [(x * scaling_factor, (height - y) * scaling_factor)
|
342 |
+
# # for x, y in resampled_contour]
|
343 |
+
|
344 |
+
# # if len(points_inch) < 3:
|
345 |
+
# # continue
|
346 |
+
|
347 |
+
# # tool_polygon = build_tool_polygon(points_inch)
|
348 |
+
# # original_polygons.append(tool_polygon)
|
349 |
+
|
350 |
+
# # if finger_clearance:
|
351 |
+
# # try:
|
352 |
+
# # tool_polygon, center = place_finger_cut_adjusted(
|
353 |
+
# # tool_polygon, points_inch, finger_centers, final_polygons_inch
|
354 |
+
# # )
|
355 |
+
# # except FingerCutOverlapError:
|
356 |
+
# # tool_polygon = original_polygons[-1]
|
357 |
+
|
358 |
+
# # exterior_coords = polygon_to_exterior_coords(tool_polygon)
|
359 |
+
# # if len(exterior_coords) < 3:
|
360 |
+
# # continue
|
361 |
+
|
362 |
+
# # msp.add_spline(exterior_coords, degree=3, dxfattribs={"layer": "TOOLS"})
|
363 |
+
# # final_polygons_inch.append(tool_polygon)
|
364 |
+
|
365 |
+
# # except ValueError as e:
|
366 |
+
# # logger.warning(f"Skipping contour: {e}")
|
367 |
+
|
368 |
+
# # dxf_filepath = os.path.join("./outputs", "out.dxf")
|
369 |
+
# # doc.saveas(dxf_filepath)
|
370 |
+
# # return dxf_filepath, final_polygons_inch, original_polygons
|
371 |
+
|
372 |
+
|
373 |
+
|
374 |
+
|
375 |
+
# def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
|
376 |
+
# doc = ezdxf.new(units=ezdxf.units.MM)
|
377 |
+
# doc.header["$INSUNITS"] = ezdxf.units.MM
|
378 |
+
# msp = doc.modelspace()
|
379 |
+
# final_polygons_inch = []
|
380 |
+
# finger_centers = []
|
381 |
+
# original_polygons = []
|
382 |
+
|
383 |
+
# # Scale correction factor based on your analysis
|
384 |
+
# scale_correction = 1.079
|
385 |
+
|
386 |
+
# for contour in inflated_contours:
|
387 |
+
# try:
|
388 |
+
# resampled_contour = resample_contour(contour)
|
389 |
+
|
390 |
+
# points_inch = [(x * scaling_factor, (height - y) * scaling_factor)
|
391 |
+
# for x, y in resampled_contour]
|
392 |
+
|
393 |
+
# if len(points_inch) < 3:
|
394 |
+
# continue
|
395 |
+
|
396 |
+
# tool_polygon = build_tool_polygon(points_inch)
|
397 |
+
# original_polygons.append(tool_polygon)
|
398 |
+
|
399 |
+
# if finger_clearance:
|
400 |
+
# try:
|
401 |
+
# tool_polygon, center = place_finger_cut_adjusted(
|
402 |
+
# tool_polygon, points_inch, finger_centers, final_polygons_inch
|
403 |
+
# )
|
404 |
+
# except FingerCutOverlapError:
|
405 |
+
# tool_polygon = original_polygons[-1]
|
406 |
+
|
407 |
+
# exterior_coords = polygon_to_exterior_coords(tool_polygon)
|
408 |
+
# if len(exterior_coords) < 3:
|
409 |
+
# continue
|
410 |
+
|
411 |
+
# # Apply scale correction AFTER finger cuts and polygon adjustments
|
412 |
+
# corrected_coords = [(x * scale_correction, y * scale_correction) for x, y in exterior_coords]
|
413 |
+
|
414 |
+
# msp.add_spline(corrected_coords, degree=3, dxfattribs={"layer": "TOOLS"})
|
415 |
+
# final_polygons_inch.append(tool_polygon)
|
416 |
+
|
417 |
+
# except ValueError as e:
|
418 |
+
# logger.warning(f"Skipping contour: {e}")
|
419 |
+
|
420 |
+
# dxf_filepath = os.path.join("./outputs", "out.dxf")
|
421 |
+
# doc.saveas(dxf_filepath)
|
422 |
+
# return dxf_filepath, final_polygons_inch, original_polygons
|
423 |
+
|
424 |
+
|
425 |
+
|
426 |
+
|
427 |
+
|
428 |
+
# def build_tool_polygon(points_inch):
|
429 |
+
# return Polygon(points_inch)
|
430 |
+
|
431 |
+
|
432 |
+
|
433 |
+
# def polygon_to_exterior_coords(poly):
|
434 |
+
# logger.info(f"Starting polygon_to_exterior_coords with input geometry type: {poly.geom_type}")
|
435 |
+
|
436 |
+
# try:
|
437 |
+
# # 1) If it's a GeometryCollection or MultiPolygon, fuse everything into one shape
|
438 |
+
# if poly.geom_type == "GeometryCollection" or poly.geom_type == "MultiPolygon":
|
439 |
+
# logger.debug(f"Performing unary_union on {poly.geom_type}")
|
440 |
+
# unified = unary_union(poly)
|
441 |
+
# if unified.is_empty:
|
442 |
+
# logger.warning("unary_union produced an empty geometry; returning empty list")
|
443 |
+
# return []
|
444 |
+
# # If union still yields multiple disjoint pieces, pick the largest Polygon
|
445 |
+
# if unified.geom_type == "GeometryCollection" or unified.geom_type == "MultiPolygon":
|
446 |
+
# largest = None
|
447 |
+
# max_area = 0.0
|
448 |
+
# for g in getattr(unified, "geoms", []):
|
449 |
+
# if hasattr(g, "area") and g.area > max_area and hasattr(g, "exterior"):
|
450 |
+
# max_area = g.area
|
451 |
+
# largest = g
|
452 |
+
# if largest is None:
|
453 |
+
# logger.warning("No valid Polygon found in unified geometry; returning empty list")
|
454 |
+
# return []
|
455 |
+
# poly = largest
|
456 |
+
# else:
|
457 |
+
# # Now unified should be a single Polygon or LinearRing
|
458 |
+
# poly = unified
|
459 |
+
|
460 |
+
# # 2) At this point, we must have a single Polygon (or something with an exterior)
|
461 |
+
# if not hasattr(poly, "exterior") or poly.exterior is None:
|
462 |
+
# logger.warning("Input geometry has no exterior ring; returning empty list")
|
463 |
+
# return []
|
464 |
+
|
465 |
+
# raw_coords = list(poly.exterior.coords)
|
466 |
+
# total = len(raw_coords)
|
467 |
+
# logger.info(f"Extracted {total} raw exterior coordinates")
|
468 |
+
|
469 |
+
# if total == 0:
|
470 |
+
# return []
|
471 |
+
|
472 |
+
# # 3) Subsample coordinates to at most 100 points (evenly spaced)
|
473 |
+
# max_pts = 100
|
474 |
+
# if total > max_pts:
|
475 |
+
# step = total // max_pts
|
476 |
+
# sampled = [raw_coords[i] for i in range(0, total, step)]
|
477 |
+
# # Ensure we include the last point to close the loop
|
478 |
+
# if sampled[-1] != raw_coords[-1]:
|
479 |
+
# sampled.append(raw_coords[-1])
|
480 |
+
# logger.info(f"Downsampled perimeter from {total} to {len(sampled)} points")
|
481 |
+
# return sampled
|
482 |
+
# else:
|
483 |
+
# return raw_coords
|
484 |
+
|
485 |
+
# except Exception as e:
|
486 |
+
# logger.error(f"Error in polygon_to_exterior_coords: {e}")
|
487 |
+
# return []
|
488 |
+
|
489 |
+
|
490 |
+
|
491 |
+
|
492 |
+
|
493 |
+
|
494 |
+
|
495 |
+
|
496 |
+
# def place_finger_cut_adjusted(
|
497 |
+
# tool_polygon: Polygon,
|
498 |
+
# points_inch: list,
|
499 |
+
# existing_centers: list,
|
500 |
+
# all_polygons: list,
|
501 |
+
# circle_diameter: float = 25.4,
|
502 |
+
# min_gap: float = 0.5,
|
503 |
+
# max_attempts: int = 100
|
504 |
+
# ) -> (Polygon, tuple):
|
505 |
+
# logger.info(f"Starting place_finger_cut_adjusted with {len(points_inch)} input points")
|
506 |
+
|
507 |
+
# from shapely.geometry import Point
|
508 |
+
# import numpy as np
|
509 |
+
# import time
|
510 |
+
# import random
|
511 |
+
|
512 |
+
# # Fallback: if we run out of time or attempts, place in the "middle" of the outline
|
513 |
+
# def fallback_solution():
|
514 |
+
# logger.warning("Using fallback approach for finger cut placement")
|
515 |
+
# # Pick the midpoint of the original outline as a last-resort center
|
516 |
+
# fallback_center = points_inch[len(points_inch) // 2]
|
517 |
+
# r = circle_diameter / 2.0
|
518 |
+
# fallback_circle = Point(fallback_center).buffer(r, resolution=32)
|
519 |
+
# try:
|
520 |
+
# union_poly = tool_polygon.union(fallback_circle)
|
521 |
+
# except Exception as e:
|
522 |
+
# logger.warning(f"Fallback union failed ({e}); trying buffer-union fallback")
|
523 |
+
# union_poly = tool_polygon.buffer(0).union(fallback_circle.buffer(0))
|
524 |
+
|
525 |
+
# existing_centers.append(fallback_center)
|
526 |
+
# logger.info(f"Fallback finger cut placed at {fallback_center}")
|
527 |
+
# return union_poly, fallback_center
|
528 |
+
|
529 |
+
# # Precompute values
|
530 |
+
# r = circle_diameter / 2.0
|
531 |
+
# needed_center_dist = circle_diameter + min_gap
|
532 |
+
|
533 |
+
# # 1) Get perimeter coordinates of this polygon
|
534 |
+
# raw_perimeter = polygon_to_exterior_coords(tool_polygon)
|
535 |
+
# if not raw_perimeter:
|
536 |
+
# logger.warning("No valid exterior coords found; using fallback immediately")
|
537 |
+
# return fallback_solution()
|
538 |
+
|
539 |
+
# # 2) Possibly subsample to at most 100 perimeter points
|
540 |
+
# if len(raw_perimeter) > 100:
|
541 |
+
# step = len(raw_perimeter) // 100
|
542 |
+
# perimeter_coords = raw_perimeter[::step]
|
543 |
+
# logger.info(f"Subsampled perimeter from {len(raw_perimeter)} to {len(perimeter_coords)} points")
|
544 |
+
# else:
|
545 |
+
# perimeter_coords = raw_perimeter[:]
|
546 |
+
|
547 |
+
# # 3) Randomize the order to avoid bias
|
548 |
+
# indices = list(range(len(perimeter_coords)))
|
549 |
+
# random.shuffle(indices)
|
550 |
+
# logger.debug(f"Shuffled perimeter indices for candidate order")
|
551 |
+
|
552 |
+
# # 4) Non-blocking timeout setup
|
553 |
+
# start_time = time.time()
|
554 |
+
# timeout_secs = 5.0 # leave ~0.1s margin
|
555 |
+
|
556 |
+
# attempts = 0
|
557 |
+
# try:
|
558 |
+
# while attempts < max_attempts:
|
559 |
+
# # 5) Abort if we're running out of time
|
560 |
+
# if time.time() - start_time > timeout_secs - 0.1:
|
561 |
+
# logger.warning(f"Approaching timeout after {attempts} attempts")
|
562 |
+
# return fallback_solution()
|
563 |
+
|
564 |
+
# # 6) For each shuffled perimeter point, try small offsets
|
565 |
+
# for idx in indices:
|
566 |
+
# # Check timeout inside the loop as well
|
567 |
+
# if time.time() - start_time > timeout_secs - 0.05:
|
568 |
+
# logger.warning("Timeout during candidate-point loop")
|
569 |
+
# return fallback_solution()
|
570 |
+
|
571 |
+
# cx, cy = perimeter_coords[idx]
|
572 |
+
# # Try five small offsets: (0,0), (±min_gap/2, 0), (0, ±min_gap/2)
|
573 |
+
# for dx, dy in [(0, 0), (-min_gap/2, 0), (min_gap/2, 0), (0, -min_gap/2), (0, min_gap/2)]:
|
574 |
+
# candidate_center = (cx + dx, cy + dy)
|
575 |
+
|
576 |
+
# # 6a) Check distance to existing finger centers
|
577 |
+
# too_close_finger = any(
|
578 |
+
# np.hypot(candidate_center[0] - ex, candidate_center[1] - ey)
|
579 |
+
# < needed_center_dist
|
580 |
+
# for (ex, ey) in existing_centers
|
581 |
+
# )
|
582 |
+
# if too_close_finger:
|
583 |
+
# continue
|
584 |
+
|
585 |
+
# # 6b) Build candidate circle with reduced resolution for speed
|
586 |
+
# candidate_circle = Point(candidate_center).buffer(r, resolution=32)
|
587 |
+
|
588 |
+
# # 6c) Must overlap ≥30% with this polygon
|
589 |
+
# try:
|
590 |
+
# inter_area = tool_polygon.intersection(candidate_circle).area
|
591 |
+
# except Exception:
|
592 |
+
# continue
|
593 |
+
|
594 |
+
# if inter_area < 0.3 * candidate_circle.area:
|
595 |
+
# continue
|
596 |
+
|
597 |
+
# # 6d) Must not intersect or even "touch" any other polygon (buffered by min_gap)
|
598 |
+
# invalid = False
|
599 |
+
# for other_poly in all_polygons:
|
600 |
+
# if other_poly.equals(tool_polygon):
|
601 |
+
# # Don't compare against itself
|
602 |
+
# continue
|
603 |
+
# # Buffer the other polygon by min_gap to enforce a strict clearance
|
604 |
+
# if other_poly.buffer(min_gap).intersects(candidate_circle) or \
|
605 |
+
# other_poly.buffer(min_gap).touches(candidate_circle):
|
606 |
+
# invalid = True
|
607 |
+
# break
|
608 |
+
# if invalid:
|
609 |
+
# continue
|
610 |
+
|
611 |
+
# # 6e) Candidate passes all tests → union and return
|
612 |
+
# try:
|
613 |
+
# union_poly = tool_polygon.union(candidate_circle)
|
614 |
+
# # If union is a MultiPolygon (more than one piece), reject
|
615 |
+
# if union_poly.geom_type == "MultiPolygon" and len(union_poly.geoms) > 1:
|
616 |
+
# continue
|
617 |
+
# # If union didn't change anything (no real cut), reject
|
618 |
+
# if union_poly.equals(tool_polygon):
|
619 |
+
# continue
|
620 |
+
# except Exception:
|
621 |
+
# continue
|
622 |
+
|
623 |
+
# existing_centers.append(candidate_center)
|
624 |
+
# logger.info(f"Finger cut placed successfully at {candidate_center} after {attempts} attempts")
|
625 |
+
# return union_poly, candidate_center
|
626 |
+
|
627 |
+
# attempts += 1
|
628 |
+
# # If we've done half the attempts and we're near timeout, bail out
|
629 |
+
# if attempts >= (max_attempts // 2) and (time.time() - start_time) > timeout_secs * 0.8:
|
630 |
+
# logger.warning(f"Approaching timeout (attempt {attempts})")
|
631 |
+
# return fallback_solution()
|
632 |
+
|
633 |
+
# logger.debug(f"Completed iteration {attempts}/{max_attempts}")
|
634 |
+
|
635 |
+
# # If we exit loop without finding a valid spot
|
636 |
+
# logger.warning(f"No valid spot after {max_attempts} attempts, using fallback")
|
637 |
+
# return fallback_solution()
|
638 |
+
|
639 |
+
# except Exception as e:
|
640 |
+
# logger.error(f"Error in place_finger_cut_adjusted: {e}")
|
641 |
+
# return fallback_solution()
|
642 |
+
|
643 |
+
|
644 |
+
|
645 |
+
|
646 |
+
|
647 |
+
|
648 |
+
|
649 |
+
|
650 |
+
|
651 |
+
|
652 |
+
# def extract_outlines(binary_image: np.ndarray) -> tuple:
|
653 |
+
# contours, _ = cv2.findContours(
|
654 |
+
# binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
655 |
+
# )
|
656 |
+
|
657 |
+
# outline_image = np.full_like(binary_image, 255) # White background
|
658 |
+
|
659 |
+
# return outline_image, contours
|
660 |
+
|
661 |
+
|
662 |
+
|
663 |
+
|
664 |
+
# def round_edges(mask: np.ndarray, radius_mm: float, scaling_factor: float) -> np.ndarray:
|
665 |
+
# """Rounds mask edges using contour smoothing."""
|
666 |
+
# if radius_mm <= 0 or scaling_factor <= 0:
|
667 |
+
# return mask
|
668 |
+
|
669 |
+
# radius_px = max(1, int(radius_mm / scaling_factor)) # Ensure min 1px
|
670 |
+
|
671 |
+
# # Handle small objects
|
672 |
+
# if np.count_nonzero(mask) < 500: # Small object threshold
|
673 |
+
# return cv2.dilate(cv2.erode(mask, np.ones((3,3))), np.ones((3,3)))
|
674 |
+
|
675 |
+
# # Existing contour processing with improvements:
|
676 |
+
# contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
677 |
+
|
678 |
+
# # NEW: Filter small contours
|
679 |
+
# contours = [c for c in contours if cv2.contourArea(c) > 100]
|
680 |
+
# smoothed_contours = []
|
681 |
+
|
682 |
+
# for contour in contours:
|
683 |
+
# try:
|
684 |
+
# # Resample with radius-based smoothing
|
685 |
+
# resampled = resample_contour(contour, radius_px)
|
686 |
+
# resampled = resampled.astype(np.int32).reshape((-1, 1, 2))
|
687 |
+
# smoothed_contours.append(resampled)
|
688 |
+
# except Exception as e:
|
689 |
+
# logger.warning(f"Error smoothing contour: {e}")
|
690 |
+
# smoothed_contours.append(contour) # Fallback to original contour
|
691 |
+
|
692 |
+
# # Draw smoothed contours
|
693 |
+
# rounded = np.zeros_like(mask)
|
694 |
+
# cv2.drawContours(rounded, smoothed_contours, -1, 255, thickness=cv2.FILLED)
|
695 |
+
|
696 |
+
# return rounded
|
697 |
+
|
698 |
+
|
699 |
+
# def predict_og(image, offset, offset_unit, edge_radius, finger_clearance=False):
|
700 |
+
# print(f"DEBUG: Image shape: {image.shape}, dtype: {image.dtype}, range: {image.min()}-{image.max()}")
|
701 |
+
|
702 |
+
# coin_size_mm = 20.0
|
703 |
+
|
704 |
+
# if offset_unit == "inches":
|
705 |
+
# offset *= 25.4
|
706 |
+
|
707 |
+
# if edge_radius is None or edge_radius == 0:
|
708 |
+
# edge_radius = 0.0001
|
709 |
+
|
710 |
+
# if offset < 0:
|
711 |
+
# raise gr.Error("Offset Value Can't be negative")
|
712 |
+
|
713 |
+
# try:
|
714 |
+
# reference_obj_img, scaling_box_coords = detect_reference_square(image)
|
715 |
+
# except ReferenceBoxNotDetectedError as e:
|
716 |
+
# return (
|
717 |
+
# None,
|
718 |
+
# None,
|
719 |
+
# None,
|
720 |
+
# None,
|
721 |
+
# f"Error: {str(e)}"
|
722 |
+
# )
|
723 |
+
# except Exception as e:
|
724 |
+
# raise gr.Error(f"Error processing image: {str(e)}")
|
725 |
+
|
726 |
+
# reference_obj_img = make_square(reference_obj_img)
|
727 |
+
|
728 |
+
# # Use U2NETP for reference object background removal
|
729 |
+
# reference_square_mask = remove_bg_u2netp(reference_obj_img)
|
730 |
+
# reference_square_mask = resize_img(reference_square_mask, reference_obj_img.shape[:2][::-1])
|
731 |
+
|
732 |
+
# try:
|
733 |
+
# scaling_factor = calculate_scaling_factor(
|
734 |
+
# target_image=reference_square_mask,
|
735 |
+
# reference_obj_size_mm=coin_size_mm,
|
736 |
+
# feature_detector="ORB",
|
737 |
+
# )
|
738 |
+
# except Exception as e:
|
739 |
+
# scaling_factor = None
|
740 |
+
# logger.warning(f"Error calculating scaling factor: {e}")
|
741 |
+
|
742 |
+
# if not scaling_factor:
|
743 |
+
# ref_size_px = (reference_square_mask.shape[0] + reference_square_mask.shape[1]) / 2
|
744 |
+
# scaling_factor = 20.0 / ref_size_px
|
745 |
+
# logger.info(f"Fallback scaling: {scaling_factor:.4f} mm/px using 20mm reference")
|
746 |
+
|
747 |
+
# # Use BiRefNet for main object background removal
|
748 |
+
# orig_size = image.shape[:2]
|
749 |
+
# objects_mask = remove_bg(image)
|
750 |
+
# processed_size = objects_mask.shape[:2]
|
751 |
+
|
752 |
+
# # REMOVE ALL COINS from mask:
|
753 |
+
# res = reference_detector_global.predict(image, conf=0.05)
|
754 |
+
# boxes = res[0].cpu().boxes.xyxy if res and len(res) > 0 else []
|
755 |
+
|
756 |
+
# for box in boxes:
|
757 |
+
# objects_mask = exclude_scaling_box(
|
758 |
+
# objects_mask,
|
759 |
+
# box,
|
760 |
+
# orig_size,
|
761 |
+
# processed_size,
|
762 |
+
# expansion_factor=1.2,
|
763 |
+
# )
|
764 |
+
|
765 |
+
# objects_mask = resize_img(objects_mask, (image.shape[1], image.shape[0]))
|
766 |
+
|
767 |
+
# # offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
|
768 |
+
# # dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8))
|
769 |
+
# # Image.fromarray(dilated_mask).save("./outputs/scaled_mask_original.jpg")
|
770 |
+
# # dilated_mask_orig = dilated_mask.copy()
|
771 |
+
|
772 |
+
# # #if edge_radius > 0:
|
773 |
+
# # # Use morphological rounding instead of contour-based
|
774 |
+
# # rounded_mask = round_edges(objects_mask, edge_radius, scaling_factor)
|
775 |
+
# # #else:
|
776 |
+
# # #rounded_mask = objects_mask.copy()
|
777 |
+
|
778 |
+
# # # Apply dilation AFTER rounding
|
779 |
+
# # offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
|
780 |
+
# # kernel = np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)
|
781 |
+
# # dilated_mask = cv2.dilate(rounded_mask, kernel)
|
782 |
+
# # Apply edge rounding first
|
783 |
+
# rounded_mask = round_edges(objects_mask, edge_radius, scaling_factor)
|
784 |
+
|
785 |
+
# # Apply dilation AFTER rounding
|
786 |
+
# offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
|
787 |
+
# kernel = np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)
|
788 |
+
# final_dilated_mask = cv2.dilate(rounded_mask, kernel)
|
789 |
+
|
790 |
+
# # Save for debugging
|
791 |
+
# Image.fromarray(final_dilated_mask).save("./outputs/scaled_mask_original.jpg")
|
792 |
+
|
793 |
+
|
794 |
+
# outlines, contours = extract_outlines(final_dilated_mask)
|
795 |
+
|
796 |
+
# try:
|
797 |
+
# dxf, finger_polygons, original_polygons = save_dxf_spline(
|
798 |
+
# contours,
|
799 |
+
# scaling_factor,
|
800 |
+
# processed_size[0],
|
801 |
+
# finger_clearance=(finger_clearance == "On")
|
802 |
+
# )
|
803 |
+
# except FingerCutOverlapError as e:
|
804 |
+
# raise gr.Error(str(e))
|
805 |
+
|
806 |
+
# shrunked_img_contours = image.copy()
|
807 |
+
|
808 |
+
# if finger_clearance == "On":
|
809 |
+
# outlines = np.full_like(final_dilated_mask, 255)
|
810 |
+
# for poly in finger_polygons:
|
811 |
+
# try:
|
812 |
+
# coords = np.array([
|
813 |
+
# (int(x / scaling_factor), int(processed_size[0] - y / scaling_factor))
|
814 |
+
# for x, y in poly.exterior.coords
|
815 |
+
# ], np.int32).reshape((-1, 1, 2))
|
816 |
+
|
817 |
+
# cv2.drawContours(shrunked_img_contours, [coords], -1, 0, thickness=2)
|
818 |
+
# cv2.drawContours(outlines, [coords], -1, 0, thickness=2)
|
819 |
+
# except Exception as e:
|
820 |
+
# logger.warning(f"Failed to draw finger cut: {e}")
|
821 |
+
# continue
|
822 |
+
# else:
|
823 |
+
# outlines = np.full_like(final_dilated_mask, 255)
|
824 |
+
# cv2.drawContours(shrunked_img_contours, contours, -1, 0, thickness=2)
|
825 |
+
# cv2.drawContours(outlines, contours, -1, 0, thickness=2)
|
826 |
+
|
827 |
+
# return (
|
828 |
+
# shrunked_img_contours,
|
829 |
+
# outlines,
|
830 |
+
# dxf,
|
831 |
+
# final_dilated_mask,
|
832 |
+
# f"{scaling_factor:.4f}")
|
833 |
+
|
834 |
+
|
835 |
+
# def predict_simple(image):
|
836 |
+
# """
|
837 |
+
# Only image in → returns (annotated, outlines, dxf, mask).
|
838 |
+
# Uses offset=0 mm, no fillet, no finger-cut.
|
839 |
+
# """
|
840 |
+
# ann, outlines, dxf_path, mask, _ = predict_og(
|
841 |
+
# image,
|
842 |
+
# offset=0,
|
843 |
+
# offset_unit="mm",
|
844 |
+
# edge_radius=0,
|
845 |
+
# finger_clearance="Off",
|
846 |
+
# )
|
847 |
+
# return ann, outlines, dxf_path, mask
|
848 |
+
|
849 |
+
# def predict_middle(image, enable_fillet, fillet_value_mm):
|
850 |
+
# """
|
851 |
+
# image + (On/Off) fillet toggle + fillet radius → returns (annotated, outlines, dxf, mask).
|
852 |
+
# Uses offset=0 mm, finger-cut off.
|
853 |
+
# """
|
854 |
+
# radius = fillet_value_mm if enable_fillet == "On" else 0
|
855 |
+
# ann, outlines, dxf_path, mask, _ = predict_og(
|
856 |
+
# image,
|
857 |
+
# offset=0,
|
858 |
+
# offset_unit="mm",
|
859 |
+
# edge_radius=radius,
|
860 |
+
# finger_clearance="Off",
|
861 |
+
# )
|
862 |
+
# return ann, outlines, dxf_path, mask
|
863 |
+
|
864 |
+
# def predict_full(image, enable_fillet, fillet_value_mm, enable_finger_cut):
|
865 |
+
# """
|
866 |
+
# image + fillet toggle/value + finger-cut toggle → returns (annotated, outlines, dxf, mask).
|
867 |
+
# Uses offset=0 mm.
|
868 |
+
# """
|
869 |
+
# radius = fillet_value_mm if enable_fillet == "On" else 0
|
870 |
+
# finger_flag = "On" if enable_finger_cut == "On" else "Off"
|
871 |
+
# ann, outlines, dxf_path, mask, _ = predict_og(
|
872 |
+
# image,
|
873 |
+
# offset=0,
|
874 |
+
# offset_unit="mm",
|
875 |
+
# edge_radius=radius,
|
876 |
+
# finger_clearance=finger_flag,
|
877 |
+
# )
|
878 |
+
# return ann, outlines, dxf_path, mask
|
879 |
+
|
880 |
+
|
881 |
+
|
882 |
+
|
883 |
+
# def update_interface(language):
|
884 |
+
# return [
|
885 |
+
# gr.Image(label=TRANSLATIONS[language]["input_image"], type="numpy"),
|
886 |
+
# gr.Row([
|
887 |
+
# gr.Number(label=TRANSLATIONS[language]["offset_value"], value=0),
|
888 |
+
# gr.Dropdown(["mm", "inches"], value="mm",
|
889 |
+
# label=TRANSLATIONS[language]["offset_unit"])
|
890 |
+
# ]),
|
891 |
+
# gr.Slider(minimum=0,maximum=20,step=1,value=5,label=TRANSLATIONS[language]["edge_radius"],visible=False,interactive=True),
|
892 |
+
# gr.Radio(choices=["On", "Off"],value="Off",label=TRANSLATIONS[language]["enable_radius"],),
|
893 |
+
# gr.Image(label=TRANSLATIONS[language]["output_image"]),
|
894 |
+
# gr.Image(label=TRANSLATIONS[language]["outlines"]),
|
895 |
+
# gr.File(label=TRANSLATIONS[language]["dxf_file"]),
|
896 |
+
# gr.Image(label=TRANSLATIONS[language]["mask"]),
|
897 |
+
# gr.Textbox(label=TRANSLATIONS[language]["scaling_factor"],placeholder=TRANSLATIONS[language]["scaling_placeholder"],),
|
898 |
+
# ]
|
899 |
+
|
900 |
+
# if __name__ == "__main__":
|
901 |
+
# os.makedirs("./outputs", exist_ok=True)
|
902 |
+
|
903 |
+
# with gr.Blocks() as demo:
|
904 |
+
# language = gr.Dropdown(
|
905 |
+
# choices=["english", "dutch"],
|
906 |
+
# value="english",
|
907 |
+
# label="Select Language",
|
908 |
+
# interactive=True
|
909 |
+
# )
|
910 |
+
|
911 |
+
# input_image = gr.Image(label=TRANSLATIONS["english"]["input_image"], type="numpy")
|
912 |
+
|
913 |
+
# with gr.Row():
|
914 |
+
# offset = gr.Number(label=TRANSLATIONS["english"]["offset_value"], value=0)
|
915 |
+
# offset_unit = gr.Dropdown([
|
916 |
+
# "mm", "inches"
|
917 |
+
# ], value="mm", label=TRANSLATIONS["english"]["offset_unit"])
|
918 |
+
|
919 |
+
# finger_toggle = gr.Radio(
|
920 |
+
# choices=["On", "Off"],
|
921 |
+
# value="Off",
|
922 |
+
# label=TRANSLATIONS["english"]["enable_finger"]
|
923 |
+
# )
|
924 |
+
|
925 |
+
# edge_radius = gr.Slider(
|
926 |
+
# minimum=0,
|
927 |
+
# maximum=20,
|
928 |
+
# step=1,
|
929 |
+
# value=5,
|
930 |
+
# label=TRANSLATIONS["english"]["edge_radius"],
|
931 |
+
# visible=False,
|
932 |
+
# interactive=True
|
933 |
+
# )
|
934 |
+
|
935 |
+
# radius_toggle = gr.Radio(
|
936 |
+
# choices=["On", "Off"],
|
937 |
+
# value="Off",
|
938 |
+
# label=TRANSLATIONS["english"]["enable_radius"],
|
939 |
+
# interactive=True
|
940 |
+
# )
|
941 |
+
|
942 |
+
# def toggle_radius(choice):
|
943 |
+
# if choice == "On":
|
944 |
+
# return gr.Slider(visible=True)
|
945 |
+
# return gr.Slider(visible=False, value=0)
|
946 |
+
|
947 |
+
# radius_toggle.change(
|
948 |
+
# fn=toggle_radius,
|
949 |
+
# inputs=radius_toggle,
|
950 |
+
# outputs=edge_radius
|
951 |
+
# )
|
952 |
+
|
953 |
+
# output_image = gr.Image(label=TRANSLATIONS["english"]["output_image"])
|
954 |
+
# outlines = gr.Image(label=TRANSLATIONS["english"]["outlines"])
|
955 |
+
# dxf_file = gr.File(label=TRANSLATIONS["english"]["dxf_file"])
|
956 |
+
# mask = gr.Image(label=TRANSLATIONS["english"]["mask"])
|
957 |
+
|
958 |
+
# scaling = gr.Textbox(
|
959 |
+
# label=TRANSLATIONS["english"]["scaling_factor"],
|
960 |
+
# placeholder=TRANSLATIONS["english"]["scaling_placeholder"]
|
961 |
+
# )
|
962 |
+
|
963 |
+
# submit_btn = gr.Button("Submit")
|
964 |
+
|
965 |
+
# language.change(
|
966 |
+
# fn=lambda x: [
|
967 |
+
# gr.update(label=TRANSLATIONS[x]["input_image"]),
|
968 |
+
# gr.update(label=TRANSLATIONS[x]["offset_value"]),
|
969 |
+
# gr.update(label=TRANSLATIONS[x]["offset_unit"]),
|
970 |
+
# gr.update(label=TRANSLATIONS[x]["output_image"]),
|
971 |
+
# gr.update(label=TRANSLATIONS[x]["outlines"]),
|
972 |
+
# gr.update(label=TRANSLATIONS[x]["enable_finger"]),
|
973 |
+
# gr.update(label=TRANSLATIONS[x]["dxf_file"]),
|
974 |
+
# gr.update(label=TRANSLATIONS[x]["mask"]),
|
975 |
+
# gr.update(label=TRANSLATIONS[x]["enable_radius"]),
|
976 |
+
# gr.update(label=TRANSLATIONS[x]["edge_radius"]),
|
977 |
+
# gr.update(
|
978 |
+
# label=TRANSLATIONS[x]["scaling_factor"],
|
979 |
+
# placeholder=TRANSLATIONS[x]["scaling_placeholder"]
|
980 |
+
# ),
|
981 |
+
# ],
|
982 |
+
# inputs=[language],
|
983 |
+
# outputs=[
|
984 |
+
# input_image, offset, offset_unit,
|
985 |
+
# output_image, outlines, finger_toggle, dxf_file,
|
986 |
+
# mask, radius_toggle, edge_radius, scaling
|
987 |
+
# ]
|
988 |
+
# )
|
989 |
+
|
990 |
+
# def custom_predict_and_format(*args):
|
991 |
+
# output_image, outlines, dxf_path, mask, scaling = predict_og(*args)
|
992 |
+
# if output_image is None:
|
993 |
+
# return (
|
994 |
+
# None, None, None, None, "Reference coin not detected!"
|
995 |
+
# )
|
996 |
+
# return (
|
997 |
+
# output_image, outlines, dxf_path, mask, scaling
|
998 |
+
# )
|
999 |
+
|
1000 |
+
# submit_btn.click(
|
1001 |
+
# fn=custom_predict_and_format,
|
1002 |
+
# inputs=[input_image, offset, offset_unit, edge_radius, finger_toggle],
|
1003 |
+
# outputs=[output_image, outlines, dxf_file, mask, scaling]
|
1004 |
+
# )
|
1005 |
+
|
1006 |
+
|
1007 |
+
# gr.Examples(
|
1008 |
+
# examples=[
|
1009 |
+
# ["./examples/Test20.jpg", 0, "mm"],
|
1010 |
+
# ["./examples/Test21.jpg", 0, "mm"],
|
1011 |
+
# ["./examples/Test22.jpg", 0, "mm"],
|
1012 |
+
# ["./examples/Test23.jpg", 0, "mm"],
|
1013 |
+
# ],
|
1014 |
+
# inputs=[input_image, offset, offset_unit]
|
1015 |
+
# )
|
1016 |
+
|
1017 |
+
# demo.launch(share=True)
|
1018 |
+
|
1019 |
import os
|
1020 |
from pathlib import Path
|
1021 |
from typing import List, Union
|
|
|
1071 |
def __init__(self, message="There was an overlap with fingercuts... Please try again to generate dxf."):
|
1072 |
super().__init__(message)
|
1073 |
|
1074 |
+
# ===== LAZY LOADING - REPLACE THE GLOBAL MODEL INITIALIZATION =====
|
1075 |
+
# Instead of loading models at startup, declare them as None
|
1076 |
+
print("Initializing lazy model loading...")
|
1077 |
+
reference_detector_global = None
|
1078 |
+
u2net_global = None
|
1079 |
+
birefnet = None
|
|
|
|
|
|
|
1080 |
|
1081 |
+
# Model paths - use absolute paths for Docker
|
1082 |
+
reference_model_path = os.path.join(CACHE_DIR, "best.pt")
|
1083 |
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
|
|
|
|
|
|
|
|
|
1084 |
|
1085 |
+
# Copy model files to cache if they don't exist - with error handling
|
1086 |
+
def ensure_model_files():
|
1087 |
+
if not os.path.exists(reference_model_path):
|
1088 |
+
if os.path.exists("best.pt"):
|
1089 |
+
shutil.copy("best.pt", reference_model_path)
|
1090 |
+
else:
|
1091 |
+
raise FileNotFoundError("best.pt model file not found")
|
1092 |
+
if not os.path.exists(u2net_model_path):
|
1093 |
+
if os.path.exists("u2netp.pth"):
|
1094 |
+
shutil.copy("u2netp.pth", u2net_model_path)
|
1095 |
+
else:
|
1096 |
+
raise FileNotFoundError("u2netp.pth model file not found")
|
1097 |
+
|
1098 |
+
# Call this at startup
|
1099 |
+
ensure_model_files()
|
1100 |
+
|
1101 |
+
# device = "cpu"
|
1102 |
+
# torch.set_float32_matmul_precision(["high", "highest"][0])
|
1103 |
+
|
1104 |
+
# ===== LAZY LOADING FUNCTIONS - ADD THESE =====
|
1105 |
+
def get_reference_detector():
|
1106 |
+
"""Lazy load reference detector model"""
|
1107 |
+
global reference_detector_global
|
1108 |
+
if reference_detector_global is None:
|
1109 |
+
logger.info("Loading reference detector model...")
|
1110 |
+
reference_detector_global = YOLO(reference_model_path)
|
1111 |
+
logger.info("Reference detector loaded successfully")
|
1112 |
+
return reference_detector_global
|
1113 |
+
|
1114 |
+
def get_u2net():
|
1115 |
+
"""Lazy load U2NETP model"""
|
1116 |
+
global u2net_global
|
1117 |
+
if u2net_global is None:
|
1118 |
+
logger.info("Loading U2NETP model...")
|
1119 |
+
u2net_global = U2NETP(3, 1)
|
1120 |
+
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
|
1121 |
+
u2net_global.to(device)
|
1122 |
+
u2net_global.eval()
|
1123 |
+
logger.info("U2NETP model loaded successfully")
|
1124 |
+
return u2net_global
|
1125 |
+
def load_birefnet_model():
|
1126 |
+
"""Load BiRefNet model from HuggingFace"""
|
1127 |
+
from transformers import AutoModelForImageSegmentation
|
1128 |
+
return AutoModelForImageSegmentation.from_pretrained(
|
1129 |
+
'ZhengPeng7/BiRefNet',
|
1130 |
+
trust_remote_code=True
|
1131 |
+
)
|
1132 |
+
def get_birefnet():
|
1133 |
+
"""Lazy load BiRefNet model"""
|
1134 |
+
global birefnet
|
1135 |
+
if birefnet is None:
|
1136 |
+
logger.info("Loading BiRefNet model...")
|
1137 |
+
birefnet = load_birefnet_model()
|
1138 |
+
birefnet.to(device)
|
1139 |
+
birefnet.eval()
|
1140 |
+
logger.info("BiRefNet model loaded successfully")
|
1141 |
+
return birefnet
|
1142 |
+
|
1143 |
+
|
1144 |
+
|
1145 |
|
1146 |
device = "cpu"
|
1147 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
1148 |
|
1149 |
# Move models to device
|
1150 |
+
# u2net_global.to(device)
|
1151 |
+
# u2net_global.eval()
|
1152 |
+
# birefnet.to(device)
|
1153 |
+
# birefnet.eval()
|
1154 |
|
1155 |
# Define transforms
|
1156 |
transform_image = transforms.Compose([
|
|
|
1159 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
1160 |
])
|
1161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1162 |
def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
|
1163 |
"""Remove background using U2NETP model specifically for reference objects"""
|
1164 |
try:
|
1165 |
+
u2net_model = get_u2net() # <-- ADD THIS LINE
|
1166 |
+
|
1167 |
image_pil = Image.fromarray(image)
|
1168 |
transform_u2netp = transforms.Compose([
|
1169 |
transforms.Resize((320, 320)),
|
|
|
1174 |
input_tensor = transform_u2netp(image_pil).unsqueeze(0).to(device)
|
1175 |
|
1176 |
with torch.no_grad():
|
1177 |
+
outputs = u2net_model(input_tensor) # <-- CHANGE FROM u2net_global
|
1178 |
|
1179 |
pred = outputs[0]
|
1180 |
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
|
|
|
1190 |
def remove_bg(image: np.ndarray) -> np.ndarray:
|
1191 |
"""Remove background using BiRefNet model for main objects"""
|
1192 |
try:
|
1193 |
+
birefnet_model = get_birefnet() # <-- ADD THIS LINE
|
1194 |
+
|
1195 |
image = Image.fromarray(image)
|
1196 |
input_images = transform_image(image).unsqueeze(0).to(device)
|
1197 |
|
1198 |
with torch.no_grad():
|
1199 |
+
preds = birefnet_model(input_images)[-1].sigmoid().cpu() # <-- CHANGE FROM birefnet
|
1200 |
pred = preds[0].squeeze()
|
1201 |
|
1202 |
pred_pil: Image = transforms.ToPILImage()(pred)
|
|
|
1249 |
def detect_reference_square(img) -> tuple:
|
1250 |
"""Detect reference square in the image and ignore other coins"""
|
1251 |
try:
|
1252 |
+
reference_detector = get_reference_detector() # <-- ADD THIS LINE
|
1253 |
+
|
1254 |
+
res = reference_detector.predict(img, conf=0.70) # <-- CHANGE FROM reference_detector_global
|
1255 |
if not res or len(res) == 0 or len(res[0].boxes) == 0:
|
1256 |
raise ReferenceBoxNotDetectedError("Unable to detect the reference coin in the image.")
|
1257 |
|
|
|
1279 |
raise
|
1280 |
|
1281 |
|
1282 |
+
|
1283 |
+
|
1284 |
+
|
1285 |
+
|
1286 |
+
|
1287 |
+
|
1288 |
def exclude_scaling_box(
|
1289 |
image: np.ndarray,
|
1290 |
bbox: np.ndarray,
|
|
|
1739 |
|
1740 |
return rounded
|
1741 |
|
1742 |
+
def cleanup_memory():
|
1743 |
+
"""Clean up memory after processing"""
|
1744 |
+
if torch.cuda.is_available():
|
1745 |
+
torch.cuda.empty_cache()
|
1746 |
+
gc.collect()
|
1747 |
+
logger.info("Memory cleanup completed")
|
1748 |
+
|
1749 |
+
def cleanup_models():
|
1750 |
+
"""Unload models to free memory"""
|
1751 |
+
global reference_detector_global, u2net_global, birefnet
|
1752 |
+
if reference_detector_global is not None:
|
1753 |
+
del reference_detector_global
|
1754 |
+
reference_detector_global = None
|
1755 |
+
if u2net_global is not None:
|
1756 |
+
del u2net_global
|
1757 |
+
u2net_global = None
|
1758 |
+
if birefnet is not None:
|
1759 |
+
del birefnet
|
1760 |
+
birefnet = None
|
1761 |
+
cleanup_memory()
|
1762 |
|
1763 |
def predict_og(image, offset, offset_unit, edge_radius, finger_clearance=False):
|
|
|
|
|
1764 |
coin_size_mm = 20.0
|
1765 |
|
1766 |
if offset_unit == "inches":
|
|
|
1812 |
processed_size = objects_mask.shape[:2]
|
1813 |
|
1814 |
# REMOVE ALL COINS from mask:
|
1815 |
+
# res = reference_detector_global.predict(image, conf=0.05)
|
1816 |
+
res = get_reference_detector().predict(image, conf=0.05)
|
1817 |
boxes = res[0].cpu().boxes.xyxy if res and len(res) > 0 else []
|
1818 |
|
1819 |
for box in boxes:
|
|
|
1827 |
|
1828 |
objects_mask = resize_img(objects_mask, (image.shape[1], image.shape[0]))
|
1829 |
|
1830 |
+
offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
|
1831 |
+
dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8))
|
1832 |
+
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_original.jpg")
|
1833 |
+
dilated_mask_orig = dilated_mask.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1834 |
|
1835 |
+
#if edge_radius > 0:
|
1836 |
+
# Use morphological rounding instead of contour-based
|
1837 |
+
rounded_mask = round_edges(objects_mask, edge_radius, scaling_factor)
|
1838 |
+
#else:
|
1839 |
+
#rounded_mask = objects_mask.copy()
|
1840 |
+
|
1841 |
# Apply dilation AFTER rounding
|
1842 |
offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
|
1843 |
kernel = np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)
|
1844 |
+
dilated_mask = cv2.dilate(rounded_mask, kernel)
|
1845 |
+
|
1846 |
+
|
|
|
|
|
1847 |
|
1848 |
+
outlines, contours = extract_outlines(dilated_mask)
|
1849 |
|
1850 |
try:
|
1851 |
dxf, finger_polygons, original_polygons = save_dxf_spline(
|
|
|
1860 |
shrunked_img_contours = image.copy()
|
1861 |
|
1862 |
if finger_clearance == "On":
|
1863 |
+
outlines = np.full_like(dilated_mask, 255)
|
1864 |
for poly in finger_polygons:
|
1865 |
try:
|
1866 |
coords = np.array([
|
|
|
1874 |
logger.warning(f"Failed to draw finger cut: {e}")
|
1875 |
continue
|
1876 |
else:
|
1877 |
+
outlines = np.full_like(dilated_mask, 255)
|
1878 |
cv2.drawContours(shrunked_img_contours, contours, -1, 0, thickness=2)
|
1879 |
cv2.drawContours(outlines, contours, -1, 0, thickness=2)
|
1880 |
+
cleanup_models()
|
1881 |
|
1882 |
return (
|
1883 |
shrunked_img_contours,
|
1884 |
outlines,
|
1885 |
dxf,
|
1886 |
+
dilated_mask_orig,
|
1887 |
f"{scaling_factor:.4f}")
|
1888 |
|
1889 |
|
|
|
1934 |
|
1935 |
|
1936 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1937 |
if __name__ == "__main__":
|
1938 |
os.makedirs("./outputs", exist_ok=True)
|
1939 |
|
1940 |
with gr.Blocks() as demo:
|
1941 |
+
input_image = gr.Image(label="Input Image", type="numpy")
|
1942 |
+
|
1943 |
+
enable_fillet = gr.Radio(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1944 |
choices=["On", "Off"],
|
1945 |
value="Off",
|
1946 |
+
label="Enable Edge Rounding",
|
1947 |
+
interactive=True
|
1948 |
)
|
1949 |
+
|
1950 |
+
fillet_value_mm = gr.Slider(
|
1951 |
minimum=0,
|
1952 |
maximum=20,
|
1953 |
step=1,
|
1954 |
value=5,
|
1955 |
+
label="Edge Radius (mm)",
|
1956 |
visible=False,
|
1957 |
interactive=True
|
1958 |
)
|
1959 |
+
|
1960 |
+
enable_finger_cut = gr.Radio(
|
1961 |
choices=["On", "Off"],
|
1962 |
value="Off",
|
1963 |
+
label="Enable Finger Clearance"
|
|
|
1964 |
)
|
1965 |
|
1966 |
+
def toggle_fillet(choice):
|
1967 |
if choice == "On":
|
1968 |
return gr.Slider(visible=True)
|
1969 |
return gr.Slider(visible=False, value=0)
|
1970 |
|
1971 |
+
enable_fillet.change(
|
1972 |
+
fn=toggle_fillet,
|
1973 |
+
inputs=enable_fillet,
|
1974 |
+
outputs=fillet_value_mm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1975 |
)
|
1976 |
+
|
1977 |
+
output_image = gr.Image(label="Output Image")
|
1978 |
+
outlines = gr.Image(label="Outlines of Objects")
|
1979 |
+
dxf_file = gr.File(label="DXF file")
|
1980 |
+
mask = gr.Image(label="Mask")
|
1981 |
|
1982 |
submit_btn = gr.Button("Submit")
|
1983 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1984 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1985 |
submit_btn.click(
|
1986 |
+
fn=predict_full,
|
1987 |
+
inputs=[input_image, enable_fillet, fillet_value_mm, enable_finger_cut],
|
1988 |
+
outputs=[output_image, outlines, dxf_file, mask]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1989 |
)
|
1990 |
|
1991 |
demo.launch(share=True)
|