File size: 4,849 Bytes
3578ff9
 
 
 
 
 
 
 
37c726a
b1fdbd7
3578ff9
37c726a
3578ff9
 
 
 
 
 
37c726a
 
 
3578ff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37c726a
 
 
 
3578ff9
37c726a
 
b1fdbd7
37c726a
 
 
b1fdbd7
 
37c726a
b1fdbd7
 
 
37c726a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3578ff9
37c726a
 
 
 
 
 
 
 
 
 
 
 
 
 
cec4478
 
37c726a
 
 
 
 
f65faf2
37c726a
 
b1fdbd7
37c726a
b1fdbd7
 
0f677f5
 
e46a7af
 
31d6d91
e46a7af
 
 
31d6d91
 
e46a7af
 
 
 
b1fdbd7
cec4478
 
0f677f5
37c726a
 
 
 
e166039
37c726a
 
3578ff9
b1fdbd7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision.models import convnext_tiny
from ultralytics import YOLO
import numpy as np
import cv2
import gradio as gr
from PIL import Image, ImageDraw
from fast_alpr import ALPR

# ------------------ Constants and Models ------------------
class_names = [
    'beige', 'black', 'blue', 'brown', 'gold',
    'green', 'grey', 'orange', 'pink', 'purple',
    'red', 'silver', 'tan', 'white', 'yellow'
]

DETECTOR_MODEL = "yolo-v9-s-608-license-plate-end2end"
OCR_MODEL = "global-plates-mobile-vit-v2-model"

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = convnext_tiny(pretrained=False)
model.classifier[2] = nn.Linear(768, len(class_names))
model.load_state_dict(torch.load("convnext_best_model.pth", map_location=device))
model = model.to(device)
model.eval()

transform = transforms.Compose([
    transforms.Resize((512, 512)),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406],
                         [0.229, 0.224, 0.225])
])

yolo_model = YOLO("yolo11x.pt")

# ------------------ Unified Inference Function ------------------
def alpr_color_inference(image):
    if image is None:
        return None, None, None, "Please upload an image to continue."

    img = image.convert("RGB")
    img_array = np.array(img)
    alpr = ALPR(detector_model=DETECTOR_MODEL, ocr_model=OCR_MODEL)
    results = alpr.predict(img_array)

    annotated_img = Image.fromarray(img_array.copy())
    draw = ImageDraw.Draw(annotated_img)

    plate_texts = []
    for result in results:
        detection = getattr(result, 'detection', None)
        ocr = getattr(result, 'ocr', None)
        if detection is not None:
            bbox_obj = getattr(detection, 'bounding_box', None)
            if bbox_obj is not None:
                bbox = [int(bbox_obj.x1), int(bbox_obj.y1), int(bbox_obj.x2), int(bbox_obj.y2)]
                draw.rectangle(bbox, outline="red", width=3)
                if ocr is not None:
                    text = getattr(ocr, 'text', '')
                    plate_texts.append(text)
                    draw.text((bbox[0], max(bbox[1] - 10, 0)), text, fill="red")

    # Color Detection
    img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
    yolo_results = yolo_model(img_cv2)
    boxes = yolo_results[0].boxes
    vehicle_class_ids = {2, 3, 5, 7}  # car, motorcycle, bus, truck
    vehicle_boxes = [box for box in boxes if int(box.cls.item()) in vehicle_class_ids]

    if not vehicle_boxes:
        color_text = "No vehicle detected"
        cropped_img = img
    else:
        largest_vehicle = max(vehicle_boxes, key=lambda box: (box.xyxy[0][2] - box.xyxy[0][0]) * (box.xyxy[0][3] - box.xyxy[0][1]))
        x1, y1, x2, y2 = map(int, largest_vehicle.xyxy[0].tolist())
        cropped_img = img.crop((x1, y1, x2, y2))
        input_tensor = transform(cropped_img).unsqueeze(0).to(device)
        with torch.no_grad():
            output = model(input_tensor)
            probs = torch.softmax(output, dim=1)[0]
            pred_idx = torch.argmax(probs).item()
            pred_class = class_names[pred_idx]
            confidence = probs[pred_idx].item()
        draw.rectangle((x1, y1, x2, y2), outline="blue", width=3)
        draw.text((x1, max(y1 - 10, 0)), f"{pred_class} ({confidence*100:.1f}%)", fill="blue")
        color_text = f"{pred_class} ({confidence*100:.1f}%)"

    detection_results = (f"Detected {len(results)} license plate(s): {', '.join(plate_texts)}"
                         if results else "No license plate detected 😔.")

    return annotated_img, cropped_img, f"{detection_results}\nVehicle Color: {color_text}"

# ------------------ Gradio UI ------------------
with gr.Blocks() as demo:
    gr.Markdown("# License Plate + Vehicle Color Detection")
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="pil", label="Upload an image")
            submit_btn = gr.Button("Run Detection")
            gr.Examples(
                examples=[
                    "examples/car5.jpg",
                    "examples/car2.jpg",
                    "examples/car3.jpg",
                    "examples/car4.jpg",
                    "examples/car6.jpg",
                    "examples/car7.jpg",
                ],
                inputs=[image_input],
                label="Example Images"
            )
        with gr.Column():
            plate_output = gr.Image(label="Combined Detection Output")
            cropped_output = gr.Image(label="(Optional) Cropped Vehicle Region")
            result_text = gr.Markdown(label="Results")

    submit_btn.click(
        alpr_color_inference,
        inputs=[image_input],
        outputs=[plate_output, cropped_output, result_text]
    )

if __name__ == "__main__":
    demo.launch(share=True)