|
from dataclasses import dataclass, make_dataclass |
|
from enum import Enum |
|
|
|
import pandas as pd |
|
|
|
from src.about import Tasks, TaskType |
|
|
|
|
|
def fields(raw_class): |
|
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ColumnContent: |
|
name: str |
|
type: str |
|
displayed_by_default: bool |
|
hidden: bool = False |
|
never_hidden: bool = False |
|
|
|
|
|
auto_eval_column_dict = [] |
|
|
|
auto_eval_column_dict.append(["model_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) |
|
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) |
|
auto_eval_column_dict.append(["n_shot", ColumnContent, ColumnContent("N-Shot", "number", False)]) |
|
auto_eval_column_dict.append(["prompt_version", ColumnContent, ColumnContent("Version", "str", False)]) |
|
|
|
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average (All) ⬆️", "number", True)]) |
|
for task_type in TaskType: |
|
auto_eval_column_dict.append([task_type.value.name, ColumnContent, ColumnContent(f"Average ({task_type.value.display_name}) {task_type.value.symbol}", "number", True)]) |
|
for task in Tasks: |
|
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", task.value.is_primary_metric)]) |
|
|
|
auto_eval_column_dict.append(["model_training", ColumnContent, ColumnContent("Type", "str", False)]) |
|
auto_eval_column_dict.append(["maltese_training", ColumnContent, ColumnContent("Maltese Training", "str", False)]) |
|
auto_eval_column_dict.append(["language_count", ColumnContent, ColumnContent("#Languages", "number", False)]) |
|
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) |
|
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) |
|
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) |
|
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) |
|
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) |
|
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)]) |
|
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)]) |
|
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model SHA", "str", False, False)]) |
|
|
|
|
|
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) |
|
|
|
|
|
@dataclass(frozen=True) |
|
class EvalQueueColumn: |
|
model = ColumnContent("model", "markdown", True) |
|
revision = ColumnContent("revision", "str", True) |
|
precision = ColumnContent("precision", "str", True) |
|
n_shot = ColumnContent("n_shot", "int", True) |
|
prompt_version = ColumnContent("prompt_version", "str", True) |
|
seed = ColumnContent("seed", "int", True) |
|
status = ColumnContent("status", "str", True) |
|
|
|
|
|
@dataclass |
|
class ModelDetails: |
|
name: str |
|
display_name: str = "" |
|
symbol: str = "" |
|
|
|
|
|
class ModelTraining(Enum): |
|
PT = ModelDetails(name="pre-trained", symbol="PT") |
|
FT = ModelDetails(name="fine-tuned", symbol="FT") |
|
IT = ModelDetails(name="instruction-tuned", symbol="IT") |
|
NK = ModelDetails(name="unknown", symbol="?") |
|
|
|
def to_str(self, separator=" "): |
|
return f"{self.value.symbol}{separator}{self.value.name}" |
|
|
|
@staticmethod |
|
def from_str(type): |
|
type = type or "" |
|
if "PT" in type: |
|
return ModelTraining.PT |
|
if "FT" in type: |
|
return ModelTraining.FT |
|
if "IT" in type: |
|
return ModelTraining.IT |
|
return ModelTraining.NK |
|
|
|
|
|
class MalteseTraining(Enum): |
|
NO = ModelDetails(name="none", symbol="NO") |
|
PT = ModelDetails(name="pre-training", symbol="PT") |
|
FT = ModelDetails(name="fine-tuning", symbol="FT") |
|
IT = ModelDetails(name="instruction-tuning", symbol="IT") |
|
NK = ModelDetails(name="unknown", symbol="?") |
|
|
|
def to_str(self, separator=" "): |
|
return f"{self.value.symbol}{separator}{self.value.name}" |
|
|
|
@staticmethod |
|
def from_str(type): |
|
type = type or "" |
|
if "NO" in type: |
|
return MalteseTraining.NO |
|
if "PT" in type: |
|
return MalteseTraining.PT |
|
if "FT" in type: |
|
return MalteseTraining.FT |
|
if "IT" in type: |
|
return MalteseTraining.IT |
|
return MalteseTraining.NK |
|
|
|
class WeightType(Enum): |
|
Adapter = ModelDetails("Adapter") |
|
Original = ModelDetails("Original") |
|
Delta = ModelDetails("Delta") |
|
|
|
class Precision(Enum): |
|
float32 = ModelDetails("float32") |
|
float16 = ModelDetails("float16") |
|
bfloat16 = ModelDetails("bfloat16") |
|
Unknown = ModelDetails("?") |
|
|
|
def from_str(precision): |
|
if precision in ["torch.float32", "float32"]: |
|
return Precision.float32 |
|
if precision in ["torch.float16", "float16"]: |
|
return Precision.float16 |
|
if precision in ["torch.bfloat16", "bfloat16"]: |
|
return Precision.bfloat16 |
|
return Precision.Unknown |
|
|
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] |
|
|
|
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] |
|
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] |
|
|
|
BENCHMARK_COLS = [t.value.col_name for t in Tasks] |
|
|
|
|