Spaces:
Running
Running
File size: 20,081 Bytes
5f226ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
import weaviate
from weaviate.connect import ConnectionParams
from weaviate.classes.init import AdditionalConfig, Timeout
from sentence_transformers import SentenceTransformer
from langchain_community.document_loaders import BSHTMLLoader
from pathlib import Path
from lxml import html
import logging
from semantic_text_splitter import HuggingFaceTextSplitter
from tokenizers import Tokenizer
import json
import os
import re
import llama_cpp
from llama_cpp import Llama
import streamlit as st
import subprocess
import time
try:
if 'logging' not in st.session_state:
weaviate_logger = logging.getLogger("httpx")
weaviate_logger.setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
st.session_state.weaviate_logger = weaviate_logger
st.session_state.logger = logger
else:
weaviate_logger = st.session_state.weaviate_logger
logger = st.session_state.logger
def runStartup():
logger.info("### Running startup.sh")
try:
#result = subprocess.run("/app/startup.sh",shell=False,capture_output=None,
# text=None,timeout=300)
#logger.info(f"startup.sh stdout: {result.stdout}")
#logger.info(f"startup.sh stderr: {result.stderr}")
#logger.info(f"Return code: {result.returncode}")
subprocess.Popen(["/app/startup.sh"])
time.sleep(180)
except Exception as e:
emsg = str(e)
logger.ERROR(f"subprocess.run EXCEPTION. e: {emsg}")
try:
with open("/app/startup.log", "r") as file:
content = file.read()
print(content)
except Exception as e2:
emsg = str(e2)
logger.ERROR(f"#### Displaying startup.log EXCEPTION. e2: {emsg}")
logger.info("### Running startup.sh complete")
if 'runStartup' not in st.session_state:
st.session_state.runStartup = True
runStartup()
######################################################################
# MAINLINE
#
logger.info("#### MAINLINE ENTERED.")
# Function to load the CSS file
def load_css(file_name):
logger.info("#### load_css entered.")
with open(file_name) as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
logger.info("#### load_css exited.")
# Load the custom CSS
if 'load_css' not in st.session_state:
load_css(".streamlit/main.css")
st.session_state.load_css = True
st.markdown("<h1 style='text-align: center; color: #666666;'>Vector Database RAG Proof of Concept</h1>", \
unsafe_allow_html=True)
st.markdown("<h6 style='text-align: center; color: #666666;'>V1</h6>", unsafe_allow_html=True)
#pathString = "/Users/660565/KPSAllInOne/ProgramFilesX86/WebCopy/DownloadedWebSites/LLMPOC_HTML"
pathString = "/app/inputDocs"
chunks = []
webpageDocNames = []
page_contentArray = []
webpageChunks = []
webpageTitles = []
webpageChunksDocNames = []
######################################################
# Connect to the Weaviate vector database.
#if 'client' not in st.session_state:
if 'client' not in st.session_state:
logger.info("#### Create Weaviate db client connection.")
client = weaviate.WeaviateClient(
connection_params=ConnectionParams.from_params(
http_host="localhost",
http_port="8080",
http_secure=False,
grpc_host="localhost",
grpc_port="50051",
grpc_secure=False
),
additional_config=AdditionalConfig(
timeout=Timeout(init=60, query=1800, insert=1800), # Values in seconds
)
)
client.connect()
st.session_state.client = client
logger.info("#### Create Weaviate db client connection exited.")
else:
client = st.session_state.client
#######################################################
# Read each text input file, parse it into a document,
# chunk it, collect chunks and document name.
if not client.collections.exists("Documents") or not client.collections.exists("Chunks") :
logger.info("#### Read and chunk input text files.")
for filename in os.listdir(pathString):
logger.debug(filename)
path = Path(pathString + "/" + filename)
filename = filename.rstrip(".html")
webpageDocNames.append(filename)
htmlLoader = BSHTMLLoader(path,"utf-8")
htmlData = htmlLoader.load()
title = htmlData[0].metadata['title']
page_content = htmlData[0].page_content
# Clean data. Remove multiple newlines, etc.
page_content = re.sub(r'\n+', '\n',page_content)
page_contentArray.append(page_content)
webpageTitles.append(title)
max_tokens = 1000
tokenizer = Tokenizer.from_pretrained("bert-base-uncased")
logger.debug(f"### tokenizer: {tokenizer}")
splitter = HuggingFaceTextSplitter(tokenizer, trim_chunks=True)
chunksOnePage = splitter.chunks(page_content, chunk_capacity=50)
chunks = []
for chnk in chunksOnePage:
logger.debug(f"#### chnk in file: {chnk}")
chunks.append(chnk)
logger.debug(f"chunks: {chunks}")
webpageChunks.append(chunks)
webpageChunksDocNames.append(filename + "Chunks")
logger.debug(f"### filename, title: {filename}, {title}")
logger.debug(f"### webpageDocNames: {webpageDocNames}")
logger.info("#### Read and chunk input text files exited.")
######################################################
# Create database webpage and chunks collections.
#wpCollection = createWebpageCollection()
#wpChunksCollection = createChunksCollection()
if not client.collections.exists("Documents"):
logger.info("#### createWebpageCollection() entered.")
#client.collections.delete("Documents")
class_obj = {
"class": "Documents",
"description": "For first attempt at loading a Weviate database.",
"vectorizer": "text2vec-transformers",
"moduleConfig": {
"text2vec-transformers": {
"vectorizeClassName": False
}
},
"vectorIndexType": "hnsw",
"vectorIndexConfig": {
"distance": "cosine",
},
"properties": [
{
"name": "title",
"dataType": ["text"],
"description": "HTML doc title.",
"vectorizer": "text2vec-transformers",
"moduleConfig": {
"text2vec-transformers": {
"vectorizePropertyName": True,
"skip": False,
"tokenization": "lowercase"
}
},
"invertedIndexConfig": {
"bm25": {
"b": 0.75,
"k1": 1.2
},
}
},
{
"name": "content",
"dataType": ["text"],
"description": "HTML page content.",
"moduleConfig": {
"text2vec-transformers": {
"vectorizePropertyName": True,
"tokenization": "whitespace"
}
}
}
]
}
wpCollection = client.collections.create_from_dict(class_obj)
st.session_state.wpCollection = wpCollection
logger.info("#### createWebpageCollection() exited.")
else:
wpCollection = client.collections.get("Documents")
st.session_state.wpCollection = wpCollection
if not client.collections.exists("Chunks"):
logger.info("#### createChunksCollection() entered.")
#client.collections.delete("Chunks")
class_obj = {
"class": "Chunks",
"description": "Collection for document chunks.",
"vectorizer": "text2vec-transformers",
"moduleConfig": {
"text2vec-transformers": {
"vectorizeClassName": True
}
},
"vectorIndexType": "hnsw",
"vectorIndexConfig": {
"distance": "cosine"
},
"properties": [
{
"name": "chunk",
"dataType": ["text"],
"description": "Single webpage chunk.",
"vectorizer": "text2vec-transformers",
"moduleConfig": {
"text2vec-transformers": {
"vectorizePropertyName": False,
"skip": False,
"tokenization": "lowercase"
}
}
},
{
"name": "chunk_index",
"dataType": ["int"]
},
{
"name": "webpage",
"dataType": ["Documents"],
"description": "Webpage content chunks.",
"invertedIndexConfig": {
"bm25": {
"b": 0.75,
"k1": 1.2
}
}
}
]
}
wpChunksCollection = client.collections.create_from_dict(class_obj)
st.session_state.wpChunksCollection = wpChunksCollection
logger.info("#### createChunksCollection() exited.")
else:
wpChunksCollection = client.collections.get("Chunks")
st.session_state.wpChunksCollection = wpChunksCollection
###########################################################
# Create document and chunks objects in the database.
if not client.collections.exists("Documents") :
logger.info("#### Create page/doc db objects.")
for i, className in enumerate(webpageDocNames):
title = webpageTitles[i]
logger.debug(f"## className, title: {className}, {title}")
# Create Webpage Object
page_content = page_contentArray[i]
# Insert the document.
wpCollectionObj_uuid = wpCollection.data.insert(
{
"name": className,
"title": title,
"content": page_content
}
)
logger.info("#### Create page/doc/db/objects exited.")
if not client.collections.exists("Chunks") :
logger.info("#### Create chunk db objects.")
# Insert the chunks for the document.
for i2, chunk in enumerate(webpageChunks):
chunk_uuid = wpChunksCollection.data.insert(
{
"title": title,
"chunk": chunk,
"chunk_index": i2,
"references":
{
"webpage": wpCollectionObj_uuid
}
}
)
logger.info("#### Create chunk db objects exited.")
#################################################################
# Initialize the LLM.
model_path = "/app/llama-2-7b-chat.Q4_0.gguf"
if 'llm' not in st.session_state:
logger.info("### Initializing LLM.")
llm = Llama(model_path,
#*,
n_gpu_layers=0,
split_mode=llama_cpp.LLAMA_SPLIT_MODE_LAYER,
main_gpu=0,
tensor_split=None,
vocab_only=False,
use_mmap=True,
use_mlock=False,
kv_overrides=None,
seed=llama_cpp.LLAMA_DEFAULT_SEED,
n_ctx=512,
n_batch=512,
n_threads=8,
n_threads_batch=16,
rope_scaling_type=llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
pooling_type=llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED,
rope_freq_base=0.0,
rope_freq_scale=0.0,
yarn_ext_factor=-1.0,
yarn_attn_factor=1.0,
yarn_beta_fast=32.0,
yarn_beta_slow=1.0,
yarn_orig_ctx=0,
logits_all=False,
embedding=False,
offload_kqv=True,
last_n_tokens_size=64,
lora_base=None,
lora_scale=1.0,
lora_path=None,
numa=False,
chat_format=None,
chat_handler=None,
draft_model=None,
tokenizer=None,
type_k=None,
type_v=None,
verbose=True
)
st.session_state.llm = llm
logger.info("### Initializing LLM exited.")
else:
llm = st.session_state.llm
def getRagData(promptText):
logger.info("#### getRagData() entered.")
###############################################################################
# Initial the the sentence transformer and encode the query prompt.
logger.debug(f"#### Encode text query prompt to create vectors. {promptText}")
model = SentenceTransformer('/app/multi-qa-MiniLM-L6-cos-v1')
vector = model.encode(promptText)
vectorList = []
logger.debug("#### Print vectors.")
for vec in vector:
vectorList.append(vec)
logger.debug(f"vectorList: {vectorList[2]}")
# Fetch chunks and print chunks.
logger.debug("#### Retrieve semchunks from db using vectors from prompt.")
wpChunksCollection = st.session_state.wpChunksCollection
semChunks = wpChunksCollection.query.near_vector(
near_vector=vectorList,
distance=0.7,
limit=3
)
logger.debug(f"### semChunks[0]: {semChunks}")
# Print chunks, corresponding document and document title.
ragData = ""
logger.debug("#### Print individual retrieved chunks.")
wpCollection = st.session_state.wpCollection
for chunk in enumerate(semChunks.objects):
logger.info(f"#### chunk: {chunk}")
ragData = ragData + "\n" + chunk[0]
webpage_uuid = chunk[1].properties['references']['webpage']
logger.info(f"webpage_uuid: {webpage_uuid}")
wpFromChunk = wpCollection.query.fetch_object_by_id(webpage_uuid)
logger.info(f"### wpFromChunk title: {wpFromChunk.properties['title']}")
#collection = client.collections.get("Chunks")
logger.info("#### getRagData() exited.")
return ragData
# Display UI
col1, col2 = st.columns(2)
with col1:
if "sysTA" not in st.session_state:
st.session_state.sysTA = st.text_area(label="sysTA",value="fdsaf fsdafdsa")
elif "sysTAtext" in st.session_state:
st.session_state.sysTA = st.text_area(label="sysTA",value=st.session_state.sysTAtext)
else:
st.session_state.sysTA = st.text_area(label="sysTA",value=st.session_state.sysTA)
if "userpTA" not in st.session_state:
st.session_state.userpTA = st.text_area(label="userpTA",value="fdsaf fsdafdsa")
elif "userpTAtext" in st.session_state:
st.session_state.userpTA = st.text_area (label="userpTA",value=st.session_state.userpTAtext)
else:
st.session_state.userpTA = st.text_area(label="userpTA",value=st.session_state.userpTA)
with col2:
if "ragpTA" not in st.session_state:
st.session_state.ragpTA = st.text_area(label="ragpTA",value="fdsaf fsdafdsa")
elif "ragpTAtext" in st.session_state:
st.session_state.ragpTA = st.text_area(label="ragpTA",value=st.session_state.ragpTAtext)
else:
st.session_state.ragpTA = st.text_area(label="ragpTA",value=st.session_state.ragpTA)
if "rspTA" not in st.session_state:
st.session_state.rspTA = st.text_area(label="rspTA",value="fdsaf fsdafdsa")
elif "rspTAtext" in st.session_state:
st.session_state.rspTA = st.text_area(label="rspTA",value=st.session_state.rspTAtext)
else:
st.session_state.rspTA = st.text_area(label="rspTA",value=st.session_state.rspTA)
def runLLM(prompt):
logger = st.session_state.logger
logger.info("### runLLM entered.")
max_tokens = 1000
temperature = 0.3
top_p = 0.1
echoVal = True
stop = ["Q", "\n"]
modelOutput = llm(
prompt,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
echo=echoVal,
stop=stop,
)
result = modelOutput["choices"][0]["text"].strip()
logger.info(f"### llmResult: {result}")
logger.info("### runLLM exited.")
return result
def setPrompt(pprompt,ragFlag):
logger = st.session_state.logger
logger.info(f"\n### setPrompt() entered. ragFlag: {ragFlag}")
if ragFlag:
ragPrompt = getRagData(pprompt)
userPrompt = pprompt + "\n" + ragPrompt
prompt = userPrompt
userPrompt = "Using this information: " + ragPrompt \
+ "process the following statement or question and produce a response. " \
+ pprompt
else:
userPrompt = st.session_state.sysTA + " " + pprompt
#prompt = f""" <s> [INST] <<SYS>> {systemTextArea.value} </SYS>> Q: {userPrompt} A: [/INST]"""
logger.info("setPrompt exited.")
logger.info(f"### userPrompt: {userPrompt}")
return userPrompt
def on_submitButton_clicked():
logger = st.session_state.logger
logger.info("### on_submitButton_clicked entered.")
st.session_state.sysTAtext = st.session_state.sysTA
logger.info(f"sysTAtext: {st.session_state.sysTAtext}")
#st.session_state.userpTAtext = st.session_state.userpTA
st.session_state.userpTAtext = setPrompt(st.session_state.userpTA,st.selectRag)
st.session_state.userpTA = st.session_state.userpTAtext
logger.info(f"userpTAtext: {st.session_state.userpTAtext}")
st.session_state.rspTAtext = runLLM(st.session_state.userpTAtext)
st.session_state.rspTA = st.session_state.rspTAtext
logger.info(f"rspTAtext: {st.session_state.rspTAtext}")
logger.info("### on_submitButton_clicked exited.")
with st.sidebar:
st.selectRag = st.checkbox("Enable Query With RAG",value=False,key="selectRag",help=None,on_change=None,args=None,kwargs=None,disabled=False,label_visibility="visible")
st.submitButton = st.button("Run LLM Query",key=None,help=None,on_click=on_submitButton_clicked,args=None,kwargs=None,type="secondary",disabled=False,use_container_width=False)
logger.info("#### semsearch.py end of code.")
except Exception as e:
try:
emsg = str(e)
logger.error(f"Program-wide EXCEPTION. e: {emsg}")
with open("/app/startup.log", "r") as file:
content = file.read()
logger.debug(content)
except Exception as e2:
emsg = str(e2)
logger.error(f"#### Displaying startup.log EXCEPTION. e2: {emsg}")
|