File size: 2,714 Bytes
fb6458d e6e631c fb6458d e6e631c fb6458d e6e631c fb6458d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import gradio as gr
from transformers import CLIPProcessor, CLIPModel
from PIL import Image
import torch
import pickle
from pathlib import Path
import os
import spaces
# Load model/processor
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
model.eval()
DATASET_DIR = Path("dataset")
CACHE_FILE = "cache.pkl"
def preprocess_image(image: Image.Image) -> Image.Image:
return image.resize((224, 224)).convert("RGB")
def get_embedding(image: Image.Image, device="cpu"):
image = preprocess_image(image)
inputs = processor(images=image, return_tensors="pt").to(device)
model_device = model.to(device)
with torch.no_grad():
emb = model_device.get_image_features(**inputs)
emb = emb / emb.norm(p=2, dim=-1, keepdim=True)
return emb
def get_reference_embeddings():
if os.path.exists(CACHE_FILE):
with open(CACHE_FILE, "rb") as f:
return pickle.load(f)
embeddings = {}
for img_path in DATASET_DIR.glob("*.jpg"):
img = Image.open(img_path).convert("RGB")
emb = get_embedding(img)
embeddings[img_path.name] = emb
with open(CACHE_FILE, "wb") as f:
pickle.dump(embeddings, f)
return embeddings
reference_embeddings = get_reference_embeddings()
@spaces.GPU
def search_similar(query_img):
query_emb = get_embedding(query_img, device="cuda")
results = []
for name, ref_emb in reference_embeddings.items():
sim = torch.nn.functional.cosine_similarity(query_emb, ref_emb.to("cuda")).item()
results.append((name, sim))
results.sort(key=lambda x: x[1], reverse=True)
return [(f"dataset/{name}", f"Score: {score:.4f}") for name, score in results[:5]]
def add_image(name: str, image):
path = DATASET_DIR / f"{name}.jpg"
image.save(path)
emb = get_embedding(image)
reference_embeddings[f"{name}.jpg"] = emb
with open(CACHE_FILE, "wb") as f:
pickle.dump(reference_embeddings, f)
return f"Image {name} added to dataset."
search_interface = gr.Interface(fn=search_similar,
inputs=gr.Image(type="pil", label="Query Image"),
outputs=gr.Gallery(label="Top Matches").style(grid=5),
allow_flagging="never")
add_interface = gr.Interface(fn=add_image,
inputs=[gr.Text(label="Image Name"), gr.Image(type="pil", label="Product Image")],
outputs="text",
allow_flagging="never")
demo = gr.TabbedInterface([search_interface, add_interface], tab_names=["Search", "Add Product"])
demo.launch()
|