Spaces:
Sleeping
Sleeping
File size: 10,060 Bytes
d1b509c 5092eb8 d1b509c 5092eb8 3a8ed2e 5092eb8 d1b509c 5092eb8 70e7566 5092eb8 70e7566 5092eb8 d1b509c 691b7fe 5092eb8 d1b509c 691b7fe d1b509c 691b7fe d1b509c 691b7fe d1b509c 971f77f d1b509c 70e7566 d1b509c 691b7fe d1b509c 70e7566 d1b509c 971f77f 70e7566 3a8ed2e d1b509c 3a8ed2e d1b509c 3a8ed2e 691b7fe 3a8ed2e 4a1ab6f 3a8ed2e 70e7566 691b7fe d1b509c 691b7fe 971f77f 691b7fe 70e7566 971f77f 691b7fe 70e7566 971f77f 691b7fe 971f77f 3a8ed2e 70e7566 5092eb8 d1b509c 5092eb8 d1b509c 5092eb8 7ce08d2 691b7fe 7ce08d2 691b7fe d1b509c 691b7fe 971f77f 691b7fe 5092eb8 70e7566 5092eb8 4a1ab6f 1172915 4a1ab6f 1172915 4a1ab6f d1b509c 850d90a 4a1ab6f 1172915 4a1ab6f 1172915 4a1ab6f 1172915 4a1ab6f 1172915 4a1ab6f 850d90a 4a1ab6f 1172915 4a1ab6f 850d90a 70e7566 850d90a 70e7566 850d90a 5092eb8 691b7fe 850d90a 4a1ab6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Suppress TensorFlow warnings
import gradio as gr
import tensorflow as tf
from tensorflow.keras.models import load_model
import numpy as np
from PIL import Image
import requests
import json
# ================== MODEL LOADING ==================
try:
model = load_model('wound_classifier_model_googlenet.h5')
print("β
Model loaded successfully")
except Exception as e:
raise RuntimeError(f"β Model loading failed: {str(e)}")
# ================== CLASS LABELS ==================
CLASS_LABELS = [
"Abrasions", "Bruises", "Burns", "Cut", "Diabetic Wounds", "Gingivitis",
"Surgical Wounds", "Venous Wounds", "athlete foot", "cellulitis",
"chickenpox", "cutaneous larva migrans", "impetigo", "nail fungus",
"ringworm", "shingles", "tooth discoloration", "ulcer"
]
# Verify model compatibility
assert len(CLASS_LABELS) == model.output_shape[-1], \
f"Class mismatch: Model expects {model.output_shape[-1]} classes, found {len(CLASS_LABELS)}"
# ================== OPENROUTER CONFIG ==================
OPENROUTER_API_KEY = "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"
OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions"
MODEL_NAME = "mistralai/mistral-7b-instruct"
# ================== IMAGE PROCESSING ==================
def preprocess_image(image, target_size=(224, 224)):
"""Process and validate input images"""
try:
if not image:
raise ValueError("π¨ No image provided")
image = image.convert("RGB").resize(target_size)
array = np.array(image) / 255.0
print(f"πΌοΈ Image processed: Shape {array.shape}")
return array
except Exception as e:
raise RuntimeError(f"πΌοΈ Image processing failed: {str(e)}")
# ================== MEDICAL GUIDELINES ==================
def get_medical_guidelines(wound_type):
"""Fetch treatment guidelines from OpenRouter API"""
headers = {
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"Content-Type": "application/json",
"HTTP-Referer": "https://huggingface.co/spaces/MahatirTusher/Wound_Treatment"
}
prompt = f"""You are a medical expert providing guidance for a patient with {wound_type}.
First, briefly introduce what {wound_type} are and their typical characteristics.
Then, provide a comprehensive care guide including:
1. Immediate First Aid Steps
2. Home Care Instructions
3. Prevention Tips
4. Warning Signs (when to seek emergency care)
Format your response in clear sections with proper spacing. Use simple,
non-technical language that a general audience can understand."""
try:
print(f"π‘ Sending API request for {wound_type}...")
response = requests.post(
OPENROUTER_API_URL,
headers=headers,
json={
"model": MODEL_NAME,
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.5
},
timeout=20
)
response.raise_for_status()
result = response.json()
print("π§ Raw API response:", json.dumps(result, indent=2))
if not result.get("choices"):
return "β οΈ API response format unexpected"
return result["choices"][0]["message"]["content"]
except Exception as e:
return f"β οΈ Guidelines unavailable: {str(e)}"
# ================== MAIN PREDICTION ==================
def predict(image):
"""Complete prediction pipeline"""
try:
# Preprocess image
processed_img = preprocess_image(image)
input_tensor = np.expand_dims(processed_img, axis=0)
# Make prediction
predictions = model.predict(input_tensor)[0]
sorted_indices = np.argsort(predictions)[::-1] # Descending order
# Format results
results = {
CLASS_LABELS[i]: float(predictions[i])
for i in sorted_indices[:3] # Top 3 predictions
}
top_class = CLASS_LABELS[sorted_indices[0]]
# Get guidelines
guidelines = get_medical_guidelines(top_class)
return results, guidelines
except Exception as e:
return {f"π¨ Error": str(e)}, ""
# ================== CSS STYLES ==================
custom_css = """
.gradio-container {
font-family: 'Times New Roman', Times, serif !important;
}
.container {
background: rgba(255, 255, 255, 0.9);
border-radius: 20px;
padding: 2rem;
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
backdrop-filter: blur(4px);
border: 1px solid rgba(255, 255, 255, 0.18);
margin: 1rem 0;
}
.title {
color: #2D3748;
text-align: center;
font-size: 2.5rem;
margin-bottom: 1rem;
}
.subtitle {
color: #4A5568;
text-align: center;
font-size: 1.2rem;
margin-bottom: 2rem;
}
.warning {
background-color: #FED7D7;
border-left: 4px solid #F56565;
padding: 1rem;
margin: 1rem 0;
border-radius: 8px;
}
.info-section {
background-color: #E6F6FF;
border-radius: 12px;
padding: 1.5rem;
margin: 1rem 0;
}
.guidelines-box {
background: #F7FAFC;
border-radius: 10px;
padding: 1rem;
margin-top: 1rem;
}
"""
# ================== GRADIO INTERFACE ==================
def create_interface():
with gr.Blocks(css=custom_css, title="WoundWise AI") as demo:
# Logo and Introduction
with gr.Column(elem_classes="container"):
gr.Image("logo.png", show_label=False, container=False)
gr.Markdown("# Welcome to WoundWise AI")
gr.Markdown("""
In today's fast-paced world, early detection of medical conditions can be a game-changer.
WoundWise AI is a cutting-edge AI-powered wound classification system developed as part
of EarlyMed, an initiative by students of Vellore Institute of Technology. Our mission
is simple yet impactful: "Early Detection, Smarter Decision."
By leveraging deep learning, this system analyzes wound images to provide accurate
classifications and essential treatment guidelines. Whether it's a minor cut or a
serious skin condition, our AI assists in identifying potential risks, helping users
make informed health decisions at an early stage.
""")
# Main Interface
with gr.Column(elem_classes="container"):
gr.Markdown("## πΈ Upload or Capture Wound Image")
gr.Markdown("Use your device's camera or upload an existing image")
file_input = gr.Image(type="pil", label="Upload Wound Image")
submit_btn = gr.Button("Analyze Now", variant="primary")
# Example Images
gr.Examples(
examples=["abrasion.jpg", "burn.png", "bruise.png", "chicken-pox.png", "cut.png"],
inputs=file_input,
label="Example Images"
)
output_label = gr.Label(label="Analysis Results", num_top_classes=3)
output_guidelines = gr.Textbox(
label="Medical Guidelines",
lines=12,
elem_classes="guidelines-box"
)
# Why Care About Wounds
with gr.Column(elem_classes="info-section"):
gr.Markdown("""
## β οΈ Why Wound Care Matters
Ignoring wounds can lead to serious complications:
- Risk of bacterial infection
- Delayed healing and scarring
- Chronic wound development
- Systemic health issues
- Increased medical costs
Early intervention and proper care are crucial for optimal healing and preventing complications.
""")
# How Our Model Works
with gr.Column(elem_classes="info-section"):
gr.Markdown("""
## π¬ Our Technology
WoundWise AI uses a state-of-the-art deep learning model based on the GoogLeNet
architecture, trained on thousands of medical images. The system:
1. Analyzes wound images using advanced computer vision
2. Identifies 18 different types of wounds and skin conditions
3. Provides real-time classification with confidence scores
4. Generates medical guidelines using advanced AI
Our model achieves high accuracy through extensive training and validation by
medical professionals.
""")
# Disclaimer
with gr.Column(elem_classes="warning"):
gr.Markdown("""
## βοΈ Medical Disclaimer
This AI system is designed to assist in preliminary wound assessment only. It is not
a substitute for professional medical advice, diagnosis, or treatment. Always seek
the advice of qualified healthcare providers with any questions regarding your
medical condition. If you believe your wound is serious or life-threatening,
please seek immediate medical attention.
""")
# Connect input to processing
submit_btn.click(
fn=predict,
inputs=[file_input],
outputs=[output_label, output_guidelines]
)
return demo
if __name__ == "__main__":
iface = create_interface()
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
) |