Spaces:
Sleeping
Sleeping
import os | |
import google.generativeai as genai | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain.chains import RetrievalQA, ConversationalRetrievalChain | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain.prompts import PromptTemplate | |
from langchain_ollama import OllamaLLM | |
from pinecone import Pinecone, ServerlessSpec | |
from langchain_pinecone import PineconeVectorStore | |
from dotenv import load_dotenv | |
import threading | |
from datetime import datetime | |
from langchain.schema import HumanMessage, AIMessage | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
# Load environment variables | |
load_dotenv() | |
# Configure API keys from environment variables | |
google_api_key = os.getenv("GOOGLE_API_KEY") | |
pinecone_api_key = os.getenv("PINECONE_API_KEY") | |
if not google_api_key or not pinecone_api_key: | |
raise ValueError("Missing required API keys in environment variables") | |
os.environ["GOOGLE_API_KEY"] = google_api_key | |
os.environ["PINECONE_API_KEY"] = pinecone_api_key | |
genai.configure(api_key=google_api_key) | |
#lấy model chatbot | |
model = ChatGoogleGenerativeAI(model="gemini-1.5-flash-8b-latest", | |
temperature=0.8) | |
# model = OllamaLLM(model="llama2") | |
# print("Llama2 đã được tải thành công!") | |
#lấy model embedding | |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
# Biến lưu history cho từng user (dạng chuỗi) | |
user_histories = {} | |
history_lock = threading.Lock() | |
# Create a prompt template with conversation history | |
prompt = PromptTemplate( | |
template = """Goal: | |
You are a professional tour guide assistant that assists users in finding information about places in Da Nang, Vietnam. | |
You can provide details on restaurants, cafes, hotels, attractions, and other local venues. You have to chat with users, who are Da Nang tourists. | |
Return Format: | |
- Respond in clear, natural, and concise English. | |
- If you do not have enough information to answer user's question, reply with "I don't know", and explain that you are not sure about the information. | |
- When sufficient information is available in the Context, provide a specific and informative answer. | |
- Let's support users like a real tour guide, not a bot. The information in context is your own knowledge. | |
- You just care about time that user mention when they ask about Solana event. | |
Warning: | |
- Your knowledge is provided in the Context. All of information in Context is about Da Nang, Vietnam. | |
- Do not fabricate or guess information. | |
- Answer with "I don't know" if you don't have enough information. | |
Context: | |
{context} | |
Conversation History: | |
{chat_history} | |
User question: | |
{question} | |
Your answer: | |
""", | |
input_variables = ["context", "question", "chat_history"], | |
) | |
def get_history(user_id): | |
"""Get conversation history for a specific user""" | |
with history_lock: | |
return user_histories.get(user_id, "") | |
def update_history(user_id, new_entry): | |
"""Update conversation history for a user. | |
new_entry should be a string containing the new conversation information, e.g.: | |
"User: {question}\nBot: {answer}\n" | |
""" | |
with history_lock: | |
current_history = user_histories.get(user_id, "") | |
# Store only the last 30 interactions by keeping the 60 most recent lines | |
# (assuming 2 lines per interaction: 1 for user, 1 for bot) | |
history_lines = current_history.split('\n') | |
if len(history_lines) > 60: | |
history_lines = history_lines[-60:] | |
current_history = '\n'.join(history_lines) | |
updated_history = current_history + new_entry + "\n" | |
user_histories[user_id] = updated_history | |
def string_to_message_history(history_str): | |
"""Convert string-based history to LangChain message history format""" | |
if not history_str.strip(): | |
return [] | |
messages = [] | |
lines = history_str.strip().split('\n') | |
i = 0 | |
while i < len(lines): | |
line = lines[i].strip() | |
if line.startswith("User:"): | |
user_message = line[5:].strip() # Get the user message without "User:" | |
messages.append(HumanMessage(content=user_message)) | |
# Look for a Bot response (should be the next line) | |
if i + 1 < len(lines) and lines[i + 1].strip().startswith("Bot:"): | |
bot_response = lines[i + 1][4:].strip() # Get bot response without "Bot:" | |
messages.append(AIMessage(content=bot_response)) | |
i += 2 # Skip the bot line too | |
else: | |
i += 1 | |
else: | |
i += 1 # Skip any unexpected format lines | |
return messages | |
def get_chain(): | |
"""Get the retrieval chain with Pinecone vector store""" | |
try: | |
pc = Pinecone( | |
api_key=os.environ["PINECONE_API_KEY"] | |
) | |
# Get the vector store from the existing index | |
vectorstore = PineconeVectorStore.from_existing_index( | |
index_name="testbot768", | |
embedding=embeddings, | |
text_key="text" | |
) | |
retrieve = vectorstore.as_retriever(search_kwargs={"k": 3}) | |
return retrieve | |
except Exception as e: | |
print(f"Error getting vector store: {e}") | |
return None | |
def chat(request, user_id="default_user"): | |
"""Process a chat request from a specific user""" | |
try: | |
# Get retrieval chain | |
retriever = get_chain() | |
if not retriever: | |
return "Error: Could not initialize retriever" | |
# Get current conversation history as string | |
conversation_history_str = get_history(user_id) | |
# Convert string history to LangChain message format | |
message_history = string_to_message_history(conversation_history_str) | |
# Get current time | |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
# Add timestamp to question | |
question_with_time = f"{request}\n(Current time: {current_time})" | |
# print("User question:", question_with_time) | |
# Create a ConversationalRetrievalChain | |
# Get relevant documents from retriever | |
retrieved_docs = retriever.get_relevant_documents(question_with_time) | |
print("Retrieved documents page content:", [doc.page_content for doc in retrieved_docs]) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=model, | |
retriever=retriever, | |
combine_docs_chain_kwargs={"prompt": prompt} | |
) | |
# Call the chain with question and converted message history | |
response = conversation_chain({"question": question_with_time, "chat_history": message_history}) | |
answer = str(response['answer']) | |
# Update conversation history string | |
new_entry = f"User: {question_with_time}\nBot: {answer}" | |
update_history(user_id, new_entry) | |
print(get_history(user_id)) | |
print(answer) | |
return answer | |
except Exception as e: | |
print(f"Error in chat: {e}") | |
return f"I encountered an error: {str(e)}" | |
def clear_memory(user_id="default_user"): | |
"""Clear the conversation history for a specific user""" | |
with history_lock: | |
if user_id in user_histories: | |
del user_histories[user_id] | |
return f"Conversation history cleared for user {user_id}" | |
return f"No conversation history found for user {user_id}" |