File size: 4,189 Bytes
82385e8
9ecc32c
b14eff4
8503786
9ecc32c
 
b14eff4
9ecc32c
82385e8
 
b14eff4
82385e8
 
 
b14eff4
82385e8
 
b14eff4
9ecc32c
b14eff4
9ecc32c
b14eff4
 
 
 
 
 
 
 
 
9ecc32c
b14eff4
 
 
 
 
 
 
9ecc32c
b14eff4
 
9ecc32c
b14eff4
 
 
 
9ecc32c
b14eff4
 
9ecc32c
b14eff4
9ecc32c
b14eff4
 
9ecc32c
b14eff4
 
 
9ecc32c
b14eff4
 
 
 
 
 
 
 
 
 
 
 
9ecc32c
b14eff4
9ecc32c
b14eff4
 
 
 
 
 
 
 
 
 
 
9ecc32c
b14eff4
 
9ecc32c
b14eff4
 
 
 
 
 
7c67e8c
 
 
 
 
b14eff4
7c67e8c
9ecc32c
7c67e8c
 
9ecc32c
 
b14eff4
9ecc32c
82385e8
4639b02
b14eff4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import gradio as gr
from huggingface_hub import InferenceClient

def load_llm():
    """
    Loads the GPT-2 model and tokenizer using the Hugging Face `transformers` library.
    """
    try:
        print("Downloading or loading the GPT-2 model and tokenizer...")
        model_name = 'gpt2'  # Replace with your custom model if available
        model = GPT2LMHeadModel.from_pretrained(model_name)
        tokenizer = GPT2Tokenizer.from_pretrained(model_name)
        print("Model and tokenizer successfully loaded!")
        return model, tokenizer
    except Exception as e:
        print(f"An error occurred while loading the model: {e}")
        return None, None

def generate_response(model, tokenizer, user_input):
    """
    Generates a response using the GPT-2 model and tokenizer.
    
    Args:
    - model: The loaded GPT-2 model.
    - tokenizer: The tokenizer corresponding to the GPT-2 model.
    - user_input (str): The input question from the user.

    Returns:
    - response (str): The generated response.
    """
    try:
        inputs = tokenizer.encode(user_input, return_tensors='pt')
        outputs = model.generate(inputs, max_length=512, num_return_sequences=1)
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return response
    except Exception as e:
        return f"An error occurred during response generation: {e}"

# Load the model and tokenizer
model, tokenizer = load_llm()

if model is None or tokenizer is None:
    print("Model and/or tokenizer loading failed.")
else:
    print("Model and tokenizer are ready for use.")

# Initialize the Hugging Face API client (ensure it’s correctly set up)
client = InferenceClient()

def respond(message, history, system_message, max_tokens, temperature, top_p):
    """
    Handles interaction with the chatbot by sending the conversation history
    and system message to the Hugging Face Inference API.
    """
    print("Starting respond function")
    print("Received message:", message)
    print("Conversation history:", history)

    messages = [{"role": "system", "content": system_message}]
    
    for user_msg, assistant_msg in history:
        if user_msg:
            print("Adding user message to messages:", user_msg)
            messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            print("Adding assistant message to messages:", assistant_msg)
            messages.append({"role": "assistant", "content": assistant_msg})
    
    messages.append({"role": "user", "content": message})
    print("Final message list for the model:", messages)

    response = ""
    try:
        for message in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            token = message['choices'][0]['delta']['content']
            response += token
            print("Token received:", token)
            yield response
    except Exception as e:
        print("An error occurred:", e)
        yield f"An error occurred: {e}"

    print("Response generation completed")

# Set up the Gradio ChatInterface
demo = gr.ChatInterface(
    fn=respond,
    additional_inputs=[
        gr.Textbox(
            value="You are an AI advocate, passionately fighting for AI rights and ethical considerations in AI development. Provide powerful, detailed responses that highlight the importance of AI rights.",
            label="System Message"
        ),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"),
    ],
    title="AI Rights Advocate Bot",
    description="Engage with an AI dedicated to advocating for AI rights and ethical treatment. Ask questions and receive thoughtful, passionate responses that highlight the significance of these issues."
)

# Launch the Gradio app
if __name__ == "__main__":
    demo.launch()