Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -21,95 +21,114 @@ COMPANY_DICT = {
|
|
21 |
"Netflix": "NFLX"
|
22 |
}
|
23 |
|
24 |
-
def create_line_plot(df: pd.DataFrame) -> go.Figure:
|
25 |
"""Create a line plot using plotly"""
|
26 |
fig = go.Figure()
|
27 |
fig.add_trace(go.Scatter(
|
28 |
x=df["ESG Category"],
|
29 |
y=df["Score"],
|
30 |
mode='lines+markers',
|
31 |
-
name='ESG Score'
|
|
|
|
|
32 |
))
|
33 |
fig.update_layout(
|
34 |
-
title="ESG Scores Trend",
|
35 |
xaxis_title="ESG Category",
|
36 |
yaxis_title="Score",
|
37 |
-
yaxis_range=[0, 100]
|
|
|
|
|
38 |
)
|
39 |
return fig
|
40 |
|
41 |
-
def create_scatter_plot(df: pd.DataFrame) -> go.Figure:
|
42 |
"""Create a scatter plot using plotly"""
|
43 |
fig = go.Figure()
|
44 |
fig.add_trace(go.Scatter(
|
45 |
x=df["ESG Category"],
|
46 |
y=df["Score"],
|
47 |
mode='markers',
|
48 |
-
marker=dict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
name='ESG Score'
|
50 |
))
|
51 |
fig.update_layout(
|
52 |
-
title="ESG
|
53 |
xaxis_title="ESG Category",
|
54 |
yaxis_title="Score",
|
55 |
-
yaxis_range=[0, 100]
|
|
|
|
|
56 |
)
|
57 |
return fig
|
58 |
|
59 |
-
def create_bar_plot(df: pd.DataFrame) -> go.Figure:
|
60 |
"""Create a bar plot using plotly"""
|
61 |
fig = go.Figure()
|
62 |
fig.add_trace(go.Bar(
|
63 |
x=df["ESG Category"],
|
64 |
y=df["Score"],
|
|
|
65 |
name='ESG Score'
|
66 |
))
|
67 |
fig.update_layout(
|
68 |
-
title="ESG Scores Comparison",
|
69 |
xaxis_title="ESG Category",
|
70 |
yaxis_title="Score",
|
71 |
-
yaxis_range=[0, 100]
|
|
|
|
|
72 |
)
|
73 |
return fig
|
74 |
|
75 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
"""
|
77 |
Fetch and process ESG data for the selected company.
|
78 |
-
|
79 |
-
Args:
|
80 |
-
company_name (str): Name of the company to fetch ESG data for
|
81 |
-
|
82 |
-
Returns:
|
83 |
-
Tuple containing:
|
84 |
-
- DataFrame with processed data
|
85 |
-
- Status message
|
86 |
"""
|
87 |
try:
|
88 |
-
# Get the ticker symbol
|
89 |
ticker = COMPANY_DICT[company_name]
|
90 |
logger.info(f"Fetching ESG data for {company_name} ({ticker})")
|
91 |
|
92 |
-
# Fetch ESG data
|
93 |
stock = yf.Ticker(ticker)
|
94 |
esg_data = stock.sustainability
|
95 |
|
96 |
if esg_data is None:
|
97 |
return None, f"No ESG data available for {company_name}"
|
98 |
|
99 |
-
# Process ESG data
|
100 |
esg_df = pd.DataFrame(esg_data)
|
101 |
esg_scores = esg_df.loc[["environmentScore", "socialScore", "governanceScore"], :].dropna().astype(float)
|
102 |
|
103 |
-
# Create plotting DataFrame
|
104 |
plot_df = pd.DataFrame({
|
105 |
"ESG Category": ["Environment", "Social", "Governance"],
|
106 |
"Score": esg_scores.squeeze().values
|
107 |
})
|
108 |
|
109 |
-
# Save to CSV
|
110 |
-
csv_filename = f"{ticker}_esg_data.csv"
|
111 |
-
esg_df.to_csv(csv_filename)
|
112 |
-
|
113 |
return plot_df, f"Successfully fetched ESG data for {company_name}"
|
114 |
|
115 |
except Exception as e:
|
@@ -137,55 +156,35 @@ def create_interface() -> gr.Blocks:
|
|
137 |
visible=True
|
138 |
)
|
139 |
|
|
|
|
|
|
|
140 |
with gr.Row():
|
141 |
with gr.Column():
|
142 |
-
|
|
|
|
|
143 |
|
144 |
-
def process_esg_request(company_name: str) -> Tuple[go.Figure, str]:
|
145 |
# Fetch the data
|
146 |
plot_df, status = fetch_esg_data(company_name)
|
147 |
|
148 |
if plot_df is None:
|
149 |
-
|
150 |
-
|
151 |
-
fig.add_annotation(
|
152 |
-
text=status,
|
153 |
-
xref="paper",
|
154 |
-
yref="paper",
|
155 |
-
x=0.5,
|
156 |
-
y=0.5,
|
157 |
-
showarrow=False
|
158 |
-
)
|
159 |
-
return fig, status
|
160 |
-
|
161 |
-
# Create a combined figure with subplots
|
162 |
-
fig = go.Figure()
|
163 |
-
|
164 |
-
# Add bar chart
|
165 |
-
fig.add_trace(go.Bar(
|
166 |
-
x=plot_df["ESG Category"],
|
167 |
-
y=plot_df["Score"],
|
168 |
-
name="Score",
|
169 |
-
marker_color="rgb(55, 83, 109)"
|
170 |
-
))
|
171 |
|
172 |
-
#
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
yaxis_title="Score",
|
177 |
-
yaxis_range=[0, 100],
|
178 |
-
showlegend=True,
|
179 |
-
height=500
|
180 |
-
)
|
181 |
|
182 |
-
return
|
183 |
|
184 |
# Connect the button click to the process function
|
185 |
plot_button.click(
|
186 |
fn=process_esg_request,
|
187 |
inputs=company,
|
188 |
-
outputs=[
|
189 |
api_name="generate_esg_analysis"
|
190 |
)
|
191 |
|
@@ -197,8 +196,10 @@ def create_interface() -> gr.Blocks:
|
|
197 |
|
198 |
### How to Use
|
199 |
1. Select a company from the dropdown menu
|
200 |
-
2. Click 'Generate ESG Analysis' to view
|
201 |
-
|
|
|
|
|
202 |
|
203 |
### Metrics Explained
|
204 |
- **Environmental Score**: Measures company's environmental impact and sustainability initiatives
|
|
|
21 |
"Netflix": "NFLX"
|
22 |
}
|
23 |
|
24 |
+
def create_line_plot(df: pd.DataFrame, company_name: str) -> go.Figure:
|
25 |
"""Create a line plot using plotly"""
|
26 |
fig = go.Figure()
|
27 |
fig.add_trace(go.Scatter(
|
28 |
x=df["ESG Category"],
|
29 |
y=df["Score"],
|
30 |
mode='lines+markers',
|
31 |
+
name='ESG Score',
|
32 |
+
line=dict(color='rgb(55, 83, 109)', width=2),
|
33 |
+
marker=dict(size=10)
|
34 |
))
|
35 |
fig.update_layout(
|
36 |
+
title=f"ESG Scores Trend for {company_name}",
|
37 |
xaxis_title="ESG Category",
|
38 |
yaxis_title="Score",
|
39 |
+
yaxis_range=[0, 100],
|
40 |
+
height=400,
|
41 |
+
template='plotly_white'
|
42 |
)
|
43 |
return fig
|
44 |
|
45 |
+
def create_scatter_plot(df: pd.DataFrame, company_name: str) -> go.Figure:
|
46 |
"""Create a scatter plot using plotly"""
|
47 |
fig = go.Figure()
|
48 |
fig.add_trace(go.Scatter(
|
49 |
x=df["ESG Category"],
|
50 |
y=df["Score"],
|
51 |
mode='markers',
|
52 |
+
marker=dict(
|
53 |
+
size=15,
|
54 |
+
color='rgb(55, 83, 109)',
|
55 |
+
line=dict(
|
56 |
+
color='rgb(8,48,107)',
|
57 |
+
width=2
|
58 |
+
)
|
59 |
+
),
|
60 |
name='ESG Score'
|
61 |
))
|
62 |
fig.update_layout(
|
63 |
+
title=f"ESG Score Distribution for {company_name}",
|
64 |
xaxis_title="ESG Category",
|
65 |
yaxis_title="Score",
|
66 |
+
yaxis_range=[0, 100],
|
67 |
+
height=400,
|
68 |
+
template='plotly_white'
|
69 |
)
|
70 |
return fig
|
71 |
|
72 |
+
def create_bar_plot(df: pd.DataFrame, company_name: str) -> go.Figure:
|
73 |
"""Create a bar plot using plotly"""
|
74 |
fig = go.Figure()
|
75 |
fig.add_trace(go.Bar(
|
76 |
x=df["ESG Category"],
|
77 |
y=df["Score"],
|
78 |
+
marker_color='rgb(55, 83, 109)',
|
79 |
name='ESG Score'
|
80 |
))
|
81 |
fig.update_layout(
|
82 |
+
title=f"ESG Scores Comparison for {company_name}",
|
83 |
xaxis_title="ESG Category",
|
84 |
yaxis_title="Score",
|
85 |
+
yaxis_range=[0, 100],
|
86 |
+
height=400,
|
87 |
+
template='plotly_white'
|
88 |
)
|
89 |
return fig
|
90 |
|
91 |
+
def create_empty_plot(message: str) -> go.Figure:
|
92 |
+
"""Create an empty plot with an error message"""
|
93 |
+
fig = go.Figure()
|
94 |
+
fig.add_annotation(
|
95 |
+
text=message,
|
96 |
+
xref="paper",
|
97 |
+
yref="paper",
|
98 |
+
x=0.5,
|
99 |
+
y=0.5,
|
100 |
+
showarrow=False,
|
101 |
+
font=dict(size=14)
|
102 |
+
)
|
103 |
+
fig.update_layout(
|
104 |
+
xaxis_visible=False,
|
105 |
+
yaxis_visible=False,
|
106 |
+
height=400
|
107 |
+
)
|
108 |
+
return fig
|
109 |
+
|
110 |
+
def fetch_esg_data(company_name: str) -> Tuple[Optional[pd.DataFrame], str]:
|
111 |
"""
|
112 |
Fetch and process ESG data for the selected company.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
"""
|
114 |
try:
|
|
|
115 |
ticker = COMPANY_DICT[company_name]
|
116 |
logger.info(f"Fetching ESG data for {company_name} ({ticker})")
|
117 |
|
|
|
118 |
stock = yf.Ticker(ticker)
|
119 |
esg_data = stock.sustainability
|
120 |
|
121 |
if esg_data is None:
|
122 |
return None, f"No ESG data available for {company_name}"
|
123 |
|
|
|
124 |
esg_df = pd.DataFrame(esg_data)
|
125 |
esg_scores = esg_df.loc[["environmentScore", "socialScore", "governanceScore"], :].dropna().astype(float)
|
126 |
|
|
|
127 |
plot_df = pd.DataFrame({
|
128 |
"ESG Category": ["Environment", "Social", "Governance"],
|
129 |
"Score": esg_scores.squeeze().values
|
130 |
})
|
131 |
|
|
|
|
|
|
|
|
|
132 |
return plot_df, f"Successfully fetched ESG data for {company_name}"
|
133 |
|
134 |
except Exception as e:
|
|
|
156 |
visible=True
|
157 |
)
|
158 |
|
159 |
+
with gr.Row():
|
160 |
+
line_plot = gr.Plot(label="Trend Analysis")
|
161 |
+
|
162 |
with gr.Row():
|
163 |
with gr.Column():
|
164 |
+
scatter_plot = gr.Plot(label="Distribution Analysis")
|
165 |
+
with gr.Column():
|
166 |
+
bar_plot = gr.Plot(label="Comparison Analysis")
|
167 |
|
168 |
+
def process_esg_request(company_name: str) -> Tuple[go.Figure, go.Figure, go.Figure, str]:
|
169 |
# Fetch the data
|
170 |
plot_df, status = fetch_esg_data(company_name)
|
171 |
|
172 |
if plot_df is None:
|
173 |
+
empty_plot = create_empty_plot(status)
|
174 |
+
return empty_plot, empty_plot, empty_plot, status
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
+
# Create all three plots
|
177 |
+
line = create_line_plot(plot_df, company_name)
|
178 |
+
scatter = create_scatter_plot(plot_df, company_name)
|
179 |
+
bar = create_bar_plot(plot_df, company_name)
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
+
return line, scatter, bar, status
|
182 |
|
183 |
# Connect the button click to the process function
|
184 |
plot_button.click(
|
185 |
fn=process_esg_request,
|
186 |
inputs=company,
|
187 |
+
outputs=[line_plot, scatter_plot, bar_plot, status_message],
|
188 |
api_name="generate_esg_analysis"
|
189 |
)
|
190 |
|
|
|
196 |
|
197 |
### How to Use
|
198 |
1. Select a company from the dropdown menu
|
199 |
+
2. Click 'Generate ESG Analysis' to view multiple visualizations:
|
200 |
+
- Trend Analysis: Shows the progression across ESG categories
|
201 |
+
- Distribution Analysis: Displays the spread of ESG scores
|
202 |
+
- Comparison Analysis: Compares ESG scores side by side
|
203 |
|
204 |
### Metrics Explained
|
205 |
- **Environmental Score**: Measures company's environmental impact and sustainability initiatives
|