Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,90 +1,78 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
|
|
3 |
|
4 |
# Load the fine-tuned model and tokenizer
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
"
|
17 |
-
|
18 |
-
"
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
}
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
def generate_tweet(input_question):
|
48 |
-
# Formulate the prompt with clear guidance for tweet generation
|
49 |
-
input_text = f"Write a very short, engaging tweet with emojis and relevant hashtags about {input_question}. Keep it between 200 and 280 characters. Provide only the tweet."
|
50 |
-
|
51 |
-
# Generate the output using the pipeline
|
52 |
-
output = generator(input_text, max_length=280, num_return_sequences=1, temperature=0.7, top_p=0.9)
|
53 |
-
|
54 |
-
# Extract the generated text
|
55 |
-
tweet = output[0]['generated_text']
|
56 |
-
|
57 |
-
# Extract the tweet part by splitting based on the prompt
|
58 |
-
tweet = tweet.split(f"Write a very short, engaging tweet with emojis and relevant hashtags about {input_question}")[-1].strip()
|
59 |
-
|
60 |
-
# Ensure the tweet is between 200 and 280 characters
|
61 |
-
tweet_length = len(tweet)
|
62 |
-
if tweet_length > 280:
|
63 |
-
tweet = tweet[:280]
|
64 |
-
last_period = tweet.rfind(".")
|
65 |
-
if last_period != -1:
|
66 |
-
tweet = tweet[:last_period + 1]
|
67 |
-
elif tweet_length < 200:
|
68 |
-
tweet = tweet.ljust(200) # Ensure a minimum length of 200 characters
|
69 |
-
|
70 |
-
# Add relevant hashtags and emojis
|
71 |
-
tweet = add_relevant_tags(tweet, input_question)
|
72 |
-
|
73 |
-
return tweet
|
74 |
-
|
75 |
-
# Gradio interface
|
76 |
-
def gradio_interface(input_question):
|
77 |
-
tweet = generate_tweet(input_question)
|
78 |
-
return tweet
|
79 |
-
|
80 |
-
# Create the Gradio app
|
81 |
-
iface = gr.Interface(
|
82 |
-
fn=gradio_interface,
|
83 |
-
inputs="text",
|
84 |
-
outputs="text",
|
85 |
-
title="AI Tweet Generator",
|
86 |
-
description="Enter a topic, and the model will generate a tweet with relevant hashtags and emojis."
|
87 |
-
)
|
88 |
|
89 |
-
# Launch the app
|
90 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
3 |
+
import re
|
4 |
|
5 |
# Load the fine-tuned model and tokenizer
|
6 |
+
try:
|
7 |
+
model = GPT2LMHeadModel.from_pretrained("Manasa1/finetuned_GPTb") # Path to your fine-tuned GPT-2 model
|
8 |
+
tokenizer = GPT2Tokenizer.from_pretrained("Manasa1/finetuned_GPTb") # Path to tokenizer
|
9 |
+
tokenizer.pad_token = tokenizer.eos_token # Ensure pad_token is set correctly
|
10 |
+
except Exception as e:
|
11 |
+
print(f"Error loading model or tokenizer: {e}")
|
12 |
+
exit()
|
13 |
+
|
14 |
+
# Function to generate an answer to a question
|
15 |
+
def generate_answer(question):
|
16 |
+
if not question.strip():
|
17 |
+
return "Error: Question cannot be empty."
|
18 |
+
try:
|
19 |
+
prompt = f"Q: {question} A:"
|
20 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=1024)
|
21 |
+
prompt_length = len(inputs["input_ids"][0])
|
22 |
+
max_new_tokens = 1024 - prompt_length
|
23 |
+
output = model.generate(
|
24 |
+
inputs["input_ids"],
|
25 |
+
max_new_tokens=max_new_tokens,
|
26 |
+
num_return_sequences=1,
|
27 |
+
no_repeat_ngram_size=2,
|
28 |
+
top_p=0.9,
|
29 |
+
top_k=50,
|
30 |
+
temperature=0.7,
|
31 |
+
do_sample=True,
|
32 |
+
pad_token_id=tokenizer.eos_token_id
|
33 |
+
)
|
34 |
+
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
35 |
+
return answer[len(prompt):].strip() if answer else "Error: Could not generate a meaningful response."
|
36 |
+
except Exception as e:
|
37 |
+
return f"Error during generation: {e}"
|
38 |
+
|
39 |
+
# Function to add relevant hashtags and emojis
|
40 |
+
def add_hashtags_and_emojis(tweet):
|
41 |
+
hashtags_and_emojis = {
|
42 |
+
"AI": ["#AI", "๐ค"],
|
43 |
+
"machine learning": ["#MachineLearning", "๐"],
|
44 |
+
"data": ["#DataScience", "๐"],
|
45 |
+
"technology": ["#Tech", "๐ป"],
|
46 |
+
"innovation": ["#Innovation", "โจ"],
|
47 |
+
"coding": ["#Coding", "๐จโ๐ป"],
|
48 |
+
"future": ["#Future", "๐ฎ"],
|
49 |
+
"startup": ["#Startup", "๐"],
|
50 |
+
"sustainability": ["#Sustainability", "๐ฑ"],
|
51 |
}
|
52 |
+
tweet_lower = tweet.lower()
|
53 |
+
added_items = []
|
54 |
+
for keyword, items in hashtags_and_emojis.items():
|
55 |
+
if keyword in tweet_lower:
|
56 |
+
added_items.extend(items)
|
57 |
+
added_items = list(dict.fromkeys(added_items))
|
58 |
+
return tweet.strip() + " " + " ".join(added_items)
|
59 |
+
|
60 |
+
# Function to handle Gradio input and output
|
61 |
+
def generate_tweet_with_hashtags(question):
|
62 |
+
generated_tweet = generate_answer(question)
|
63 |
+
final_tweet = add_hashtags_and_emojis(generated_tweet)
|
64 |
+
return final_tweet
|
65 |
+
|
66 |
+
# Gradio app
|
67 |
+
with gr.Blocks() as app:
|
68 |
+
gr.Markdown("# AI Tweet Generator with Hashtags and Emojis")
|
69 |
+
gr.Markdown("Enter a question or topic, and the app will generate a tweet and enhance it with relevant hashtags and emojis!")
|
70 |
+
question_input = gr.Textbox(label="Enter your question or topic:")
|
71 |
+
output_tweet = gr.Textbox(label="Generated Tweet with Hashtags and Emojis:", interactive=False)
|
72 |
+
generate_button = gr.Button("Generate Tweet")
|
73 |
+
generate_button.click(generate_tweet_with_hashtags, inputs=[question_input], outputs=[output_tweet])
|
74 |
+
|
75 |
+
# Run the app
|
76 |
+
if __name__ == "__main__":
|
77 |
+
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
|
|
|