Manju080's picture
Changes in app.py
8e05fb6
raw
history blame
6.97 kB
import gradio as gr
import time
import json
# Import RAG system components
from rag_system.vector_store import VectorStore
from rag_system.retriever import SQLRetriever
from rag_system.prompt_engine import PromptEngine
from rag_system.sql_generator import SQLGenerator
# Initialize RAG system components
print("Initializing RAG system...")
try:
vector_store = VectorStore()
retriever = SQLRetriever(vector_store)
prompt_engine = PromptEngine()
sql_generator = SQLGenerator(retriever, prompt_engine)
print("RAG system initialized successfully!")
except Exception as e:
print(f"Error initializing RAG system: {e}")
sql_generator = None
def generate_sql(question, table_headers):
"""Generate SQL using the RAG system directly."""
if sql_generator is None:
return "❌ Error: RAG system not initialized"
try:
start_time = time.time()
# Generate SQL using RAG system
result = sql_generator.generate_sql(question, table_headers)
processing_time = time.time() - start_time
return f"""
**Generated SQL:**
```sql
{result['sql_query']}
```
**Model Used:** {result['model_used']}
**Processing Time:** {processing_time:.2f}s
**Status:** {result['status']}
**Retrieved Examples:** {len(result['retrieved_examples'])} examples used for RAG
"""
except Exception as e:
return f"❌ Error: {str(e)}"
def batch_generate_sql(questions_text, table_headers):
"""Generate SQL for multiple questions."""
if sql_generator is None:
return "❌ Error: RAG system not initialized"
try:
# Parse questions
questions = [q.strip() for q in questions_text.split("\n") if q.strip()]
output = f"**Batch Results:**\n"
output += f"Total Queries: {len(questions)}\n"
successful_count = 0
for i, question in enumerate(questions):
try:
start_time = time.time()
result = sql_generator.generate_sql(question, table_headers)
processing_time = time.time() - start_time
output += f"\n**Query {i+1}:** {question}\n"
output += f"```sql\n{result['sql_query']}\n```\n"
output += f"Model: {result['model_used']} | Time: {processing_time:.2f}s\n"
if result['status'] == 'success':
successful_count += 1
except Exception as e:
output += f"\n**Query {i+1}:** {question}\n"
output += f"❌ Error: {str(e)}\n"
output += f"\n**Successful:** {successful_count}/{len(questions)}"
return output
except Exception as e:
return f"❌ Error: {str(e)}"
def check_system_health():
"""Check the health of the RAG system."""
try:
if sql_generator is None:
return "❌ System Status: RAG system not initialized"
# Get model info
model_info = sql_generator.get_model_info()
return f"""
**System Health:**
- **Status:** βœ… Healthy
- **System Loaded:** βœ… Yes
- **System Loading:** ❌ No
- **Error:** None
- **Timestamp:** {time.strftime('%Y-%m-%d %H:%M:%S')}
**Model Info:**
{json.dumps(model_info, indent=2) if model_info else 'Not available'}
"""
except Exception as e:
return f"❌ Health check error: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="Text-to-SQL RAG with CodeLlama", theme=gr.themes.Soft()) as demo:
gr.Markdown("#Text-to-SQL RAG with CodeLlama")
gr.Markdown("Generate SQL queries from natural language using **RAG (Retrieval-Augmented Generation)** and **CodeLlama** models.")
gr.Markdown("**Features:** RAG-enhanced generation, CodeLlama integration, Vector-based retrieval, Advanced prompt engineering")
with gr.Tab("Single Query"):
with gr.Row():
with gr.Column(scale=1):
question_input = gr.Textbox(
label="Question",
placeholder="e.g., Show me all employees with salary greater than 50000",
lines=3
)
table_headers_input = gr.Textbox(
label="Table Headers (comma-separated)",
placeholder="e.g., id, name, salary, department",
value="id, name, salary, department"
)
generate_btn = gr.Button("Generate SQL", variant="primary", size="lg")
with gr.Column(scale=1):
output = gr.Markdown(label="Result")
with gr.Tab("Batch Queries"):
with gr.Row():
with gr.Column(scale=1):
batch_questions = gr.Textbox(
label="Questions (one per line)",
placeholder="Show me all employees\nCount total employees\nAverage salary by department",
lines=5
)
batch_headers = gr.Textbox(
label="Table Headers (comma-separated)",
placeholder="e.g., id, name, salary, department",
value="id, name, salary, department"
)
batch_btn = gr.Button("Generate Batch SQL", variant="primary", size="lg")
with gr.Column(scale=1):
batch_output = gr.Markdown(label="Batch Results")
with gr.Tab("System Health"):
with gr.Row():
health_btn = gr.Button("Check System Health", variant="secondary", size="lg")
health_output = gr.Markdown(label="Health Status")
# Event handlers
generate_btn.click(
generate_sql,
inputs=[question_input, table_headers_input],
outputs=output
)
batch_btn.click(
batch_generate_sql,
inputs=[batch_questions, batch_headers],
outputs=batch_output
)
health_btn.click(
check_system_health,
outputs=health_output
)
gr.Markdown("---")
gr.Markdown("""
## How It Works
1. **RAG System**: Retrieves relevant SQL examples from vector database
2. **CodeLlama**: Generates SQL using retrieved examples as context
3. **Vector Search**: Finds similar questions and their SQL solutions
4. **Enhanced Generation**: Combines retrieval + generation for better accuracy
## Technology Stack
- **Backend**: Direct RAG system integration
- **LLM**: CodeLlama-7B-Python-GGUF (primary)
- **Vector DB**: ChromaDB with sentence transformers
- **Frontend**: Gradio interface
- **Hosting**: Hugging Face Spaces
## Performance
- **Model**: CodeLlama-7B-Python-GGUF
- **Response Time**: < 5 seconds
- **Accuracy**: High (RAG-enhanced)
- **Cost**: Free (local inference)
""")
# Launch the interface
if __name__ == "__main__":
demo.launch()