Manju080's picture
Initial commit
c399543
raw
history blame
16.8 kB
"""
Data Processor for RAG System
Processes WikiSQL dataset and prepares data for the RAG system.
"""
import json
import os
from typing import List, Dict, Any, Optional, Tuple
from pathlib import Path
import pandas as pd
from datasets import load_dataset
from loguru import logger
class DataProcessor:
"""Processes WikiSQL dataset for RAG system."""
def __init__(self, data_dir: str = "./data"):
"""
Initialize the data processor.
Args:
data_dir: Directory to store processed data
"""
self.data_dir = Path(data_dir)
self.data_dir.mkdir(parents=True, exist_ok=True)
# File paths
self.processed_data_path = self.data_dir / "processed_examples.json"
self.vector_store_data_path = self.data_dir / "vector_store_data.json"
self.statistics_path = self.data_dir / "data_statistics.json"
logger.info(f"Data processor initialized at {self.data_dir}")
def process_wikisql_dataset(self,
max_examples: Optional[int] = None,
split: str = "train") -> List[Dict[str, Any]]:
"""
Process WikiSQL dataset and prepare examples for RAG system.
Args:
max_examples: Maximum number of examples to process (None for all)
split: Dataset split to use ('train', 'validation', 'test')
Returns:
List of processed examples
"""
try:
logger.info(f"Loading WikiSQL {split} dataset...")
# Load dataset
dataset = load_dataset("wikisql", split=split)
if max_examples:
dataset = dataset.select(range(min(max_examples, len(dataset))))
logger.info(f"Processing {len(dataset)} examples...")
# Process examples
processed_examples = []
for i, example in enumerate(dataset):
processed_example = self._process_single_example(example, i)
if processed_example:
processed_examples.append(processed_example)
# Progress logging
if (i + 1) % 1000 == 0:
logger.info(f"Processed {i + 1}/{len(dataset)} examples")
# Save processed data
self._save_processed_data(processed_examples)
# Generate statistics
stats = self._generate_statistics(processed_examples)
self._save_statistics(stats)
logger.info(f"Successfully processed {len(processed_examples)} examples")
return processed_examples
except Exception as e:
logger.error(f"Error processing WikiSQL dataset: {e}")
raise
def _process_single_example(self, example: Dict[str, Any], index: int) -> Optional[Dict[str, Any]]:
"""
Process a single WikiSQL example.
Args:
example: Raw example from WikiSQL dataset
index: Example index
Returns:
Processed example or None if invalid
"""
try:
# Extract basic information
question = example.get("question", "").strip()
table_headers = example.get("table", {}).get("header", [])
sql_query = example.get("sql", {}).get("human_readable", "")
# Validate example
if not question or not table_headers or not sql_query:
return None
# Clean and normalize
question = self._clean_text(question)
table_headers = [self._clean_text(h) for h in table_headers]
sql_query = self._clean_sql(sql_query)
# Analyze complexity and categorize
complexity = self._assess_example_complexity(question, sql_query)
category = self._categorize_example(question, sql_query)
# Create processed example
processed_example = {
"example_id": f"wikisql_{index}",
"question": question,
"table_headers": table_headers,
"sql": sql_query,
"difficulty": complexity,
"category": category,
"metadata": {
"source": "wikisql",
"split": "train",
"original_index": index,
"table_name": example.get("table", {}).get("name", "unknown"),
"question_type": self._classify_question_type(question),
"sql_features": self._extract_sql_features(sql_query)
}
}
return processed_example
except Exception as e:
logger.warning(f"Error processing example {index}: {e}")
return None
def _clean_text(self, text: str) -> str:
"""Clean and normalize text."""
if not text:
return ""
# Remove extra whitespace
text = " ".join(text.split())
# Remove special characters that might cause issues
text = text.replace('"', "'").replace('"', "'")
return text.strip()
def _clean_sql(self, sql: str) -> str:
"""Clean and normalize SQL query."""
if not sql:
return ""
# Remove extra whitespace
sql = " ".join(sql.split())
# Ensure proper SQL formatting
sql = sql.replace(" ,", ",").replace(", ", ",")
sql = sql.replace(" (", "(").replace("( ", "(")
sql = sql.replace(" )", ")").replace(") ", ")")
# Add semicolon if missing
if not sql.endswith(';'):
sql += ';'
return sql.strip()
def _assess_example_complexity(self, question: str, sql: str) -> str:
"""Assess the complexity of an example."""
complexity_score = 0
# Question complexity
if len(question.split()) > 15:
complexity_score += 2
elif len(question.split()) > 10:
complexity_score += 1
# SQL complexity
sql_lower = sql.lower()
if 'join' in sql_lower:
complexity_score += 2
if 'group by' in sql_lower:
complexity_score += 2
if 'having' in sql_lower:
complexity_score += 2
if 'subquery' in sql_lower or '(' in sql_lower and ')' in sql_lower:
complexity_score += 2
if 'union' in sql_lower or 'intersect' in sql_lower:
complexity_score += 3
# Determine difficulty level
if complexity_score >= 6:
return "hard"
elif complexity_score >= 3:
return "medium"
else:
return "easy"
def _categorize_example(self, question: str, sql: str) -> str:
"""Categorize the example based on question and SQL."""
question_lower = question.lower()
sql_lower = sql.lower()
# Aggregation queries
if any(word in question_lower for word in ['count', 'how many', 'number of']):
return "aggregation"
elif any(word in question_lower for word in ['average', 'mean', 'sum', 'total']):
return "aggregation"
# Grouping queries
elif any(word in question_lower for word in ['group by', 'grouped', 'by department', 'by category']):
return "grouping"
# Join queries
elif any(word in question_lower for word in ['join', 'combine', 'merge', 'connect']):
return "join"
# Sorting queries
elif any(word in question_lower for word in ['order by', 'sort', 'rank', 'top', 'highest', 'lowest']):
return "sorting"
# Filtering queries
elif any(word in question_lower for word in ['where', 'filter', 'condition']):
return "filtering"
# Simple queries
else:
return "simple"
def _classify_question_type(self, question: str) -> str:
"""Classify the type of question."""
question_lower = question.lower()
if '?' in question_lower:
return "interrogative"
elif any(word in question_lower for word in ['show', 'display', 'list']):
return "display"
elif any(word in question_lower for word in ['find', 'get', 'retrieve']):
return "retrieval"
else:
return "statement"
def _extract_sql_features(self, sql: str) -> List[str]:
"""Extract SQL features from the query."""
features = []
sql_lower = sql.lower()
if 'select' in sql_lower:
features.append("select")
if 'from' in sql_lower:
features.append("from")
if 'where' in sql_lower:
features.append("where")
if 'join' in sql_lower:
features.append("join")
if 'group by' in sql_lower:
features.append("group_by")
if 'having' in sql_lower:
features.append("having")
if 'order by' in sql_lower:
features.append("order_by")
if 'limit' in sql_lower:
features.append("limit")
if 'distinct' in sql_lower:
features.append("distinct")
if 'count(' in sql_lower:
features.append("count_aggregation")
if 'avg(' in sql_lower:
features.append("avg_aggregation")
if 'sum(' in sql_lower:
features.append("sum_aggregation")
return features
def _save_processed_data(self, examples: List[Dict[str, Any]]) -> None:
"""Save processed examples to file."""
try:
with open(self.processed_data_path, 'w', encoding='utf-8') as f:
json.dump(examples, f, indent=2, ensure_ascii=False)
logger.info(f"Saved {len(examples)} processed examples to {self.processed_data_path}")
except Exception as e:
logger.error(f"Error saving processed data: {e}")
def _save_statistics(self, stats: Dict[str, Any]) -> None:
"""Save data statistics to file."""
try:
with open(self.statistics_path, 'w', encoding='utf-8') as f:
json.dump(stats, f, indent=2, ensure_ascii=False)
logger.info(f"Saved statistics to {self.statistics_path}")
except Exception as e:
logger.error(f"Error saving statistics: {e}")
def _generate_statistics(self, examples: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Generate comprehensive statistics about the processed data."""
if not examples:
return {"error": "No examples to analyze"}
# Basic counts
total_examples = len(examples)
# Difficulty distribution
difficulty_counts = {}
for example in examples:
difficulty = example.get("difficulty", "unknown")
difficulty_counts[difficulty] = difficulty_counts.get(difficulty, 0) + 1
# Category distribution
category_counts = {}
for example in examples:
category = example.get("category", "unknown")
category_counts[category] = category_counts.get(category, 0) + 1
# Question type distribution
question_type_counts = {}
for example in examples:
question_type = example.get("metadata", {}).get("question_type", "unknown")
question_type_counts[question_type] = question_type_counts.get(question_type, 0) + 1
# SQL features distribution
sql_features_counts = {}
for example in examples:
features = example.get("metadata", {}).get("sql_features", [])
for feature in features:
sql_features_counts[feature] = sql_features_counts.get(feature, 0) + 1
# Table schema statistics
table_sizes = []
for example in examples:
headers = example.get("table_headers", [])
table_sizes.append(len(headers))
avg_table_size = sum(table_sizes) / len(table_sizes) if table_sizes else 0
return {
"total_examples": total_examples,
"difficulty_distribution": difficulty_counts,
"category_distribution": category_counts,
"question_type_distribution": question_type_counts,
"sql_features_distribution": sql_features_counts,
"table_schema_stats": {
"average_columns": avg_table_size,
"min_columns": min(table_sizes) if table_sizes else 0,
"max_columns": max(table_sizes) if table_sizes else 0
},
"data_quality": {
"examples_with_questions": sum(1 for e in examples if e.get("question")),
"examples_with_sql": sum(1 for e in examples if e.get("sql")),
"examples_with_headers": sum(1 for e in examples if e.get("table_headers"))
}
}
def load_processed_data(self) -> List[Dict[str, Any]]:
"""Load previously processed data."""
try:
if self.processed_data_path.exists():
with open(self.processed_data_path, 'r', encoding='utf-8') as f:
data = json.load(f)
logger.info(f"Loaded {len(data)} processed examples")
return data
else:
logger.warning("No processed data found")
return []
except Exception as e:
logger.error(f"Error loading processed data: {e}")
return []
def get_data_statistics(self) -> Dict[str, Any]:
"""Get current data statistics."""
try:
if self.statistics_path.exists():
with open(self.statistics_path, 'r', encoding='utf-8') as f:
stats = json.load(f)
return stats
else:
return {"error": "No statistics available"}
except Exception as e:
logger.error(f"Error loading statistics: {e}")
return {"error": str(e)}
def create_sample_dataset(self, num_examples: int = 100) -> List[Dict[str, Any]]:
"""Create a small sample dataset for testing."""
sample_examples = [
{
"example_id": "sample_1",
"question": "How many employees are older than 30?",
"table_headers": ["id", "name", "age", "department", "salary"],
"sql": "SELECT COUNT(*) FROM employees WHERE age > 30;",
"difficulty": "easy",
"category": "aggregation",
"metadata": {
"source": "sample",
"question_type": "interrogative",
"sql_features": ["select", "count_aggregation", "where"]
}
},
{
"example_id": "sample_2",
"question": "Show all employees in IT department",
"table_headers": ["id", "name", "age", "department", "salary"],
"sql": "SELECT * FROM employees WHERE department = 'IT';",
"difficulty": "easy",
"category": "filtering",
"metadata": {
"source": "sample",
"question_type": "display",
"sql_features": ["select", "where"]
}
},
{
"example_id": "sample_3",
"question": "What is the average salary by department?",
"table_headers": ["id", "name", "age", "department", "salary"],
"sql": "SELECT department, AVG(salary) FROM employees GROUP BY department;",
"difficulty": "medium",
"category": "grouping",
"metadata": {
"source": "sample",
"question_type": "interrogative",
"sql_features": ["select", "avg_aggregation", "group_by"]
}
}
]
# Add more examples if requested
while len(sample_examples) < num_examples:
base_example = sample_examples[len(sample_examples) % 3]
new_example = base_example.copy()
new_example["example_id"] = f"sample_{len(sample_examples) + 1}"
sample_examples.append(new_example)
return sample_examples[:num_examples]