Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,21 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
-
from diffusers import
|
4 |
from diffusers.utils import export_to_video
|
5 |
|
6 |
-
# Load the
|
7 |
st.write("Loading model... (first run may take a few minutes)")
|
8 |
|
9 |
-
model_id = "
|
10 |
-
pipe =
|
11 |
|
12 |
-
st.title("
|
13 |
prompt = st.text_input("Enter a text prompt for the video:")
|
14 |
frames = st.slider("Number of frames (video length)", min_value=8, max_value=81, value=24)
|
15 |
|
16 |
if st.button("Generate Video") and prompt:
|
17 |
with st.spinner("Generating video... this may take a while on CPU"):
|
18 |
-
result = pipe(prompt=prompt,
|
19 |
video_frames = result.frames # List of PIL images
|
20 |
export_to_video(video_frames, "output.mp4", fps=8)
|
21 |
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
+
from diffusers import StableVideoDiffusionPipeline
|
4 |
from diffusers.utils import export_to_video
|
5 |
|
6 |
+
# Load the video generation pipeline
|
7 |
st.write("Loading model... (first run may take a few minutes)")
|
8 |
|
9 |
+
model_id = "stabilityai/stable-video-diffusion-img2vid"
|
10 |
+
pipe = StableVideoDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
11 |
|
12 |
+
st.title("Text-to-Video Generator")
|
13 |
prompt = st.text_input("Enter a text prompt for the video:")
|
14 |
frames = st.slider("Number of frames (video length)", min_value=8, max_value=81, value=24)
|
15 |
|
16 |
if st.button("Generate Video") and prompt:
|
17 |
with st.spinner("Generating video... this may take a while on CPU"):
|
18 |
+
result = pipe(prompt=prompt, num_frames=frames, num_inference_steps=20)
|
19 |
video_frames = result.frames # List of PIL images
|
20 |
export_to_video(video_frames, "output.mp4", fps=8)
|
21 |
|