File size: 11,365 Bytes
6baf719 a58bc70 152fa4b f8f9179 a58bc70 f8f9179 a58bc70 4f8044a 2be9d10 a432ed6 4f8044a a432ed6 4f8044a a432ed6 4f8044a a432ed6 4f8044a f83a852 4f8044a a432ed6 4f8044a a432ed6 4f8044a f83a852 4f8044a a432ed6 4f8044a a432ed6 2be9d10 a432ed6 2be9d10 a432ed6 2be9d10 a432ed6 f8f9179 2be9d10 6baf719 76b67b7 a58bc70 76b67b7 a58bc70 76b67b7 a432ed6 a58bc70 6baf719 f83a852 76b67b7 f83a852 76b67b7 6baf719 76b67b7 f83a852 76b67b7 f83a852 6baf719 f83a852 6baf719 f83a852 33b01c1 f83a852 33b01c1 6baf719 33b01c1 f83a852 33b01c1 f83a852 6baf719 f83a852 33b01c1 f83a852 6baf719 f83a852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import cv2 as cv
import numpy as np
import gradio as gr
from pathlib import Path
from collections import Counter, defaultdict
from huggingface_hub import hf_hub_download
from facial_fer_model import FacialExpressionRecog
from yunet import YuNet
# Download ONNX-modellen
FD_MODEL_PATH = hf_hub_download(repo_id="opencv/face_detection_yunet", filename="face_detection_yunet_2023mar.onnx")
FER_MODEL_PATH = hf_hub_download(repo_id="opencv/facial_expression_recognition", filename="facial_expression_recognition_mobilefacenet_2022july.onnx")
backend_id = cv.dnn.DNN_BACKEND_OPENCV
target_id = cv.dnn.DNN_TARGET_CPU
fer_model = FacialExpressionRecog(modelPath=FER_MODEL_PATH, backendId=backend_id, targetId=target_id)
detect_model = YuNet(modelPath=FD_MODEL_PATH)
# EN -> NL mapping (lowercase) incl. varianten/typo's
EN_TO_NL = {
"neutral": "neutraal",
"happy": "blij",
"happiness": "blij",
"sad": "verdrietig",
"sadness": "verdrietig",
"surprise": "verrast",
"surprised": "verrast",
"supprised": "verrast", # typo
"surprized": "verrast",
"angry": "boos",
"anger": "boos",
"disgust": "walging",
"fear": "angstig",
"fearful": "angstig",
"fearfull": "angstig", # typo
"contempt": "minachting",
"unknown": "onbekend",
}
def to_dutch_lower(label: str) -> str:
if not label:
return "onbekend"
key = label.strip().lower()
return EN_TO_NL.get(key, key)
emotion_stats = defaultdict(int)
# Confidence helpers
def _format_pct(conf):
if conf is None:
return None
try:
c = float(conf)
except Exception:
return None
if c <= 1.0:
c *= 100.0
c = max(0.0, min(100.0, c))
return f"{int(round(c))}%"
def _parse_infer_output(result):
if isinstance(result, np.ndarray):
arr = result
if arr.ndim == 1 and arr.size > 1:
idx = int(np.argmax(arr))
conf = float(arr[idx])
return idx, conf
elif arr.size == 1:
return int(arr.flat[0]), None
else:
try:
idx = int(arr[0])
return idx, None
except Exception:
return 0, None
if isinstance(result, (list, tuple)):
if len(result) >= 2 and isinstance(result[1], (float, np.floating, int, np.integer)):
try:
return int(result[0]), float(result[1])
except Exception:
pass
if len(result) >= 1:
try:
return int(result[0]), None
except Exception:
return 0, None
try:
return int(result), None
except Exception:
return 0, None
def visualize(image, det_res, labels, confs):
output = image.copy()
landmark_color = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (0, 255, 255)]
for i, (det, lab) in enumerate(zip(det_res, labels)):
bbox = det[0:4].astype(np.int32)
label_en = FacialExpressionRecog.getDesc(lab)
fer_type_str_nl = to_dutch_lower(label_en)
pct = _format_pct(confs[i] if i < len(confs) else None)
txt = f"{fer_type_str_nl}" + (f" {pct}" if pct else "")
cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (0, 255, 0), 2)
cv.putText(output, txt, (bbox[0], max(0, bbox[1] - 10)), cv.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv.LINE_AA)
landmarks = det[4:14].astype(np.int32).reshape((5, 2))
for idx, landmark in enumerate(landmarks):
cv.circle(output, landmark, 2, landmark_color[idx], 2)
return output
def summarize_emotions(labels, confs):
if not labels:
return "## **geen gezicht gedetecteerd**"
names_nl = [to_dutch_lower(FacialExpressionRecog.getDesc(lab)) for lab in labels]
counts = Counter(names_nl)
conf_bucket = defaultdict(list)
for i, name in enumerate(names_nl):
if i < len(confs) and confs[i] is not None:
conf_bucket[name].append(float(confs[i]))
top = counts.most_common(1)[0][0]
parts = []
for name, n in sorted(counts.items(), key=lambda kv: (-kv[1], kv[0])):
if conf_bucket[name]:
avg = sum(conf_bucket[name]) / len(conf_bucket[name])
parts.append(f"{name} ({n}, gem. {_format_pct(avg)})")
else:
parts.append(f"{name} ({n})")
details = ", ".join(parts)
return f"# **{top}**\n\n_Gedetecteerde emoties: {details}_"
def process_image(input_image):
image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR)
h, w, _ = image.shape
detect_model.setInputSize([w, h])
dets = detect_model.infer(image)
if dets is None:
return cv.cvtColor(image, cv.COLOR_BGR2RGB), [], [], None
labels, confs = [], []
for face_points in dets:
raw = fer_model.infer(image, face_points[:-1])
lab, conf = _parse_infer_output(raw)
labels.append(lab)
confs.append(conf)
output = visualize(image, dets, labels, confs)
return cv.cvtColor(output, cv.COLOR_BGR2RGB), labels, confs, dets
def detect_expression(input_image):
output_img, labels, confs, _ = process_image(input_image)
emotion_md = summarize_emotions(labels, confs)
for lab in labels:
name_nl = to_dutch_lower(FacialExpressionRecog.getDesc(lab))
emotion_stats[name_nl] += 1
stats_plot = draw_bar_chart_cv(emotion_stats)
return output_img, emotion_md, stats_plot
def detect_expression_no_stats(input_image):
output_img, labels, confs, _ = process_image(input_image)
emotion_md = summarize_emotions(labels, confs)
return output_img, emotion_md
def draw_bar_chart_cv(stats: dict, width=640, height=320):
img = np.full((height, width, 3), 255, dtype=np.uint8)
cv.putText(img, "Live emotie-statistieken", (12, 28), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 0), 2, cv.LINE_AA)
if not stats:
cv.putText(img, "Nog geen statistieken", (12, height//2), cv.FONT_HERSHEY_SIMPLEX, 0.9, (128, 128, 128), 2, cv.LINE_AA)
return cv.cvtColor(img, cv.COLOR_BGR2RGB)
left, right, top, bottom = 60, 20, 50, 40
plot_w = width - left - right
plot_h = height - top - bottom
origin = (left, height - bottom)
cv.line(img, origin, (left + plot_w, height - bottom), (0, 0, 0), 2)
cv.line(img, origin, (left, height - bottom - plot_h), (0, 0, 0), 2)
labels = list(stats.keys())
values = [stats[k] for k in labels]
max_val = max(values) if max(values) > 0 else 1
n = len(labels)
gap = 12
bar_w = max(10, int((plot_w - gap * (n + 1)) / max(1, n)))
for i, (lab, val) in enumerate(zip(labels, values)):
x1 = left + gap + i * (bar_w + gap)
x2 = x1 + bar_w
h_px = int((val / max_val) * (plot_h - 10))
y1 = height - bottom - h_px
y2 = height - bottom - 1
cv.rectangle(img, (x1, y1), (x2, y2), (0, 170, 60), -1)
cv.putText(img, str(val), (x1 + 2, y1 - 6), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 90, 30), 1, cv.LINE_AA)
show_lab = lab if len(lab) <= 12 else lab[:11] + "…"
(tw, th), _ = cv.getTextSize(show_lab, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
tx = x1 + (bar_w - tw) // 2
ty = height - bottom + th + 12
cv.putText(img, show_lab, (tx, ty), cv.FONT_HERSHEY_SIMPLEX, 0.5, (40, 40, 40), 1, cv.LINE_AA)
return cv.cvtColor(img, cv.COLOR_BGR2RGB)
IMAGE_EXTS = {".jpg", ".jpeg", ".png", ".bmp", ".webp"}
EXAMPLES_DIR = Path("examples")
if EXAMPLES_DIR.exists() and EXAMPLES_DIR.is_dir():
example_paths = [str(p) for p in sorted(EXAMPLES_DIR.iterdir()) if Path(p).suffix.lower() in IMAGE_EXTS]
else:
example_paths = []
example_list = [[p] for p in example_paths]
CACHE_EXAMPLES = bool(example_list)
INFO_HTML = """
<div>
<h3>Hoe werkt deze gezichtsuitdrukking-herkenner?</h3>
<p>Dit model kan automatisch acht emoties herkennen in een foto van een gezicht:</p>
<ul>
<li>neutraal</li>
<li>blij</li>
<li>verdrietig</li>
<li>verrast</li>
<li>boos</li>
<li>walging</li>
<li>angstig</li>
<li>minachting</li>
</ul>
<p>Je kunt hierboven een eigen foto uploaden of een voorbeeld aanklikken. Het systeem doorloopt twee stappen:</p>
<ol>
<li><b>Gezichtsdetectie</b> – met <i>YuNet</i> wordt het gezicht in de afbeelding gelokaliseerd.</li>
<li><b>Emotieherkenning</b> – het gevonden gezicht wordt door <i>MobileFaceNet</i> geanalyseerd om de meest waarschijnlijke emotie te voorspellen.</li>
</ol>
<p>Deze modellen zijn getraind met <b>machine learning</b>. Voor dit type taak <b>is supervised training gebruikt</b>:
er is gewerkt met een grote dataset van gezichten waarbij elke foto een label (zoals “blij” of “boos”) heeft. Tijdens het trainen leert het model welke combinaties van gezichtskenmerken bij welke emotie horen.</p>
<p>Door heel veel voorbeelden te zien, kan het model ook bij nieuwe foto’s een inschatting maken. Het kijkt niet naar één detail, maar naar patronen in het hele gezicht.</p>
</div>
"""
custom_css = """
#emotie-uitslag { color: #16a34a; }
#emotie-uitslag h1, #emotie-uitslag h2, #emotie-uitslag h3 { margin: 0.25rem 0; }
#uitleg-blok {
background: #f3f4f6;
border: 1px solid #e5e7eb;
border-radius: 10px;
padding: 12px 14px;
}
#uitleg-blok h3 { margin: 6px 0 8px 0; }
#uitleg-blok p { margin: 6px 0; }
#uitleg-blok ul { margin: 6px 0 6px 18px; }
#uitleg-blok ol { margin: 6px 0 6px 18px; }
"""
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("## Herkenning van gezichtsuitdrukkingen (FER) met OpenCV DNN")
gr.Markdown("Detecteert gezichten en herkent gezichtsuitdrukkingen met YuNet + MobileFaceNet (ONNX).")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="numpy", label="Afbeelding uploaden")
with gr.Row():
submit_btn = gr.Button("Verstuur", variant="primary")
clear_btn = gr.Button("Wissen")
with gr.Column():
output_image = gr.Image(type="numpy", label="Resultaat gezichtsuitdrukking")
emotion_md = gr.Markdown("## **Nog geen resultaat**", elem_id="emotie-uitslag")
with gr.Row():
with gr.Column():
gr.Markdown("**Voorbeelden (klik om te testen):**")
gr.Examples(
examples=example_list,
inputs=input_image,
outputs=[output_image, emotion_md],
fn=detect_expression_no_stats,
examples_per_page=20,
cache_examples=CACHE_EXAMPLES
)
gr.HTML(INFO_HTML, elem_id="uitleg-blok")
with gr.Column():
stats_image = gr.Image(
label="Statistieken",
type="numpy",
value=draw_bar_chart_cv(emotion_stats)
)
def clear_all_on_new():
return None, "## **Nog geen resultaat**"
def clear_all_button():
return None, None, "## **Nog geen resultaat**", draw_bar_chart_cv(emotion_stats)
input_image.change(fn=clear_all_on_new, outputs=[output_image, emotion_md])
submit_btn.click(fn=detect_expression, inputs=input_image, outputs=[output_image, emotion_md, stats_image])
clear_btn.click(fn=clear_all_button, outputs=[input_image, output_image, emotion_md, stats_image])
if __name__ == "__main__":
demo.launch()
|