Spaces:
Runtime error
Runtime error
# import gradio as gr | |
# import torch | |
# from PIL import Image | |
# from model import CRM | |
# from inference import generate3d | |
# import numpy as np | |
# # Load model | |
# crm_path = "CRM.pth" # Make sure the model is uploaded to the Space | |
# model = CRM(torch.load(crm_path, map_location="cpu")) | |
# model = model.to("cuda:0" if torch.cuda.is_available() else "cpu") | |
# def generate_3d(image_path, seed=1234, scale=5.5, step=30): | |
# image = Image.open(image_path).convert("RGB") | |
# np_img = np.array(image) | |
# glb_path = generate3d(model, np_img, np_img, "cuda:0" if torch.cuda.is_available() else "cpu") | |
# return glb_path | |
# iface = gr.Interface( | |
# fn=generate_3d, | |
# inputs=gr.Image(type="filepath"), | |
# outputs=gr.Model3D(), | |
# title="Convolutional Reconstruction Model (CRM)", | |
# description="Upload an image to generate a 3D model." | |
# ) | |
# iface.launch() | |
#############2nd################3 | |
# import os | |
# import torch | |
# import gradio as gr | |
# from huggingface_hub import hf_hub_download | |
# from model import CRM # Make sure this matches your model file structure | |
# # Define model details | |
# REPO_ID = "Mariam-Elz/CRM" # Hugging Face model repo | |
# MODEL_FILES = { | |
# "ccm-diffusion": "ccm-diffusion.pth", | |
# "pixel-diffusion": "pixel-diffusion.pth", | |
# "CRM": "CRM.pth" | |
# } | |
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
# # Download models from Hugging Face if not already present | |
# MODEL_DIR = "./models" | |
# os.makedirs(MODEL_DIR, exist_ok=True) | |
# for name, filename in MODEL_FILES.items(): | |
# model_path = os.path.join(MODEL_DIR, filename) | |
# if not os.path.exists(model_path): | |
# print(f"Downloading {filename}...") | |
# hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=MODEL_DIR) | |
# # Load the model | |
# print("Loading CRM Model...") | |
# model = CRM() | |
# model.load_state_dict(torch.load(os.path.join(MODEL_DIR, MODEL_FILES["CRM"]), map_location=DEVICE)) | |
# model.to(DEVICE) | |
# model.eval() | |
# print("✅ Model Loaded Successfully!") | |
# # Define Gradio Interface | |
# def predict(input_image): | |
# with torch.no_grad(): | |
# output = model(input_image.to(DEVICE)) # Modify based on model input format | |
# return output.cpu() | |
# demo = gr.Interface( | |
# fn=predict, | |
# inputs=gr.Image(type="pil"), | |
# outputs=gr.Image(type="pil"), | |
# title="Convolutional Reconstruction Model (CRM)", | |
# description="Upload an image to generate a reconstructed output." | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
########################3rd-MAIN######################3 | |
# import torch | |
# import gradio as gr | |
# import requests | |
# import os | |
# # Download model weights from Hugging Face model repo (if not already present) | |
# model_repo = "Mariam-Elz/CRM" # Your Hugging Face model repo | |
# model_files = { | |
# "ccm-diffusion.pth": "ccm-diffusion.pth", | |
# "pixel-diffusion.pth": "pixel-diffusion.pth", | |
# "CRM.pth": "CRM.pth", | |
# } | |
# os.makedirs("models", exist_ok=True) | |
# for filename, output_path in model_files.items(): | |
# file_path = f"models/{output_path}" | |
# if not os.path.exists(file_path): | |
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}" | |
# print(f"Downloading {filename}...") | |
# response = requests.get(url) | |
# with open(file_path, "wb") as f: | |
# f.write(response.content) | |
# # Load model (This part depends on how the model is defined) | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
# def load_model(): | |
# model_path = "models/CRM.pth" | |
# model = torch.load(model_path, map_location=device) | |
# model.eval() | |
# return model | |
# model = load_model() | |
# # Define inference function | |
# def infer(image): | |
# """Process input image and return a reconstructed image.""" | |
# with torch.no_grad(): | |
# # Assuming model expects a tensor input | |
# image_tensor = torch.tensor(image).to(device) | |
# output = model(image_tensor) | |
# return output.cpu().numpy() | |
# # Create Gradio UI | |
# demo = gr.Interface( | |
# fn=infer, | |
# inputs=gr.Image(type="numpy"), | |
# outputs=gr.Image(type="numpy"), | |
# title="Convolutional Reconstruction Model", | |
# description="Upload an image to get the reconstructed output." | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
#################4th################## | |
# import torch | |
# import gradio as gr | |
# import requests | |
# import os | |
# # Define model repo | |
# model_repo = "Mariam-Elz/CRM" | |
# # Define model files and download paths | |
# model_files = { | |
# "CRM.pth": "models/CRM.pth" | |
# } | |
# os.makedirs("models", exist_ok=True) | |
# # Download model files only if they don't exist | |
# for filename, output_path in model_files.items(): | |
# if not os.path.exists(output_path): | |
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}" | |
# print(f"Downloading {filename}...") | |
# response = requests.get(url) | |
# with open(output_path, "wb") as f: | |
# f.write(response.content) | |
# # Load model with low memory usage | |
# def load_model(): | |
# model_path = "models/CRM.pth" | |
# model = torch.load(model_path, map_location="cpu") # Load on CPU to reduce memory usage | |
# model.eval() | |
# return model | |
# model = load_model() | |
# # Define inference function | |
# def infer(image): | |
# """Process input image and return a reconstructed image.""" | |
# with torch.no_grad(): | |
# image_tensor = torch.tensor(image).unsqueeze(0) # Add batch dimension | |
# image_tensor = image_tensor.to("cpu") # Keep on CPU to save memory | |
# output = model(image_tensor) | |
# return output.squeeze(0).numpy() | |
# # Create Gradio UI | |
# demo = gr.Interface( | |
# fn=infer, | |
# inputs=gr.Image(type="numpy"), | |
# outputs=gr.Image(type="numpy"), | |
# title="Convolutional Reconstruction Model", | |
# description="Upload an image to get the reconstructed output." | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
# ##############5TH################# | |
# import torch | |
# import torch.nn as nn | |
# import gradio as gr | |
# import requests | |
# import os | |
# # Define model repo | |
# model_repo = "Mariam-Elz/CRM" | |
# # Define model files and download paths | |
# model_files = { | |
# "CRM.pth": "models/CRM.pth" | |
# } | |
# os.makedirs("models", exist_ok=True) | |
# # Download model files only if they don't exist | |
# for filename, output_path in model_files.items(): | |
# if not os.path.exists(output_path): | |
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}" | |
# print(f"Downloading {filename}...") | |
# response = requests.get(url) | |
# with open(output_path, "wb") as f: | |
# f.write(response.content) | |
# # Define the model architecture (you MUST replace this with your actual model) | |
# class CRM_Model(nn.Module): | |
# def __init__(self): | |
# super(CRM_Model, self).__init__() | |
# self.layer1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) | |
# self.relu = nn.ReLU() | |
# self.layer2 = nn.Conv2d(64, 3, kernel_size=3, padding=1) | |
# def forward(self, x): | |
# x = self.layer1(x) | |
# x = self.relu(x) | |
# x = self.layer2(x) | |
# return x | |
# # Load model with proper architecture | |
# def load_model(): | |
# model = CRM_Model() # Instantiate the model architecture | |
# model_path = "models/CRM.pth" | |
# model.load_state_dict(torch.load(model_path, map_location="cpu")) # Load weights | |
# model.eval() # Set to evaluation mode | |
# return model | |
# model = load_model() | |
# # Define inference function | |
# def infer(image): | |
# """Process input image and return a reconstructed image.""" | |
# with torch.no_grad(): | |
# image_tensor = torch.tensor(image).unsqueeze(0).permute(0, 3, 1, 2).float() / 255.0 # Convert to tensor | |
# output = model(image_tensor) # Run through model | |
# output = output.squeeze(0).permute(1, 2, 0).numpy() * 255.0 # Convert back to image | |
# return output.astype("uint8") | |
# # Create Gradio UI | |
# demo = gr.Interface( | |
# fn=infer, | |
# inputs=gr.Image(type="numpy"), | |
# outputs=gr.Image(type="numpy"), | |
# title="Convolutional Reconstruction Model", | |
# description="Upload an image to get the reconstructed output." | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
#############6th################## | |
import torch | |
import gradio as gr | |
import requests | |
import os | |
import numpy as np | |
# Hugging Face Model Repository | |
model_repo = "Mariam-Elz/CRM" | |
# Download Model Weights (Only CRM.pth to Save Memory) | |
model_path = "models/CRM.pth" | |
os.makedirs("models", exist_ok=True) | |
if not os.path.exists(model_path): | |
url = f"https://huggingface.co/{model_repo}/resolve/main/CRM.pth" | |
print(f"Downloading CRM.pth...") | |
response = requests.get(url) | |
with open(model_path, "wb") as f: | |
f.write(response.content) | |
# Set Device (Use CPU to Reduce RAM Usage) | |
device = "cpu" | |
# Load Model Efficiently | |
def load_model(): | |
model = torch.load(model_path, map_location=device) | |
if isinstance(model, torch.nn.Module): | |
model.eval() # Ensure model is in inference mode | |
return model | |
# Load model only when needed (saves memory) | |
model = load_model() | |
# Define Inference Function with Memory Optimizations | |
def infer(image): | |
"""Process input image and return a reconstructed image.""" | |
with torch.no_grad(): | |
# Convert image to torch tensor & normalize (float16 to save RAM) | |
image_tensor = torch.tensor(image, dtype=torch.float16).unsqueeze(0).permute(0, 3, 1, 2) / 255.0 | |
image_tensor = image_tensor.to(device) | |
# Model Inference | |
output = model(image_tensor) | |
# Convert back to numpy image format | |
output_image = output.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255.0 | |
output_image = np.clip(output_image, 0, 255).astype(np.uint8) | |
# Free Memory | |
del image_tensor, output | |
torch.cuda.empty_cache() | |
return output_image | |
# Create Gradio UI | |
demo = gr.Interface( | |
fn=infer, | |
inputs=gr.Image(type="numpy"), | |
outputs=gr.Image(type="numpy"), | |
title="Optimized Convolutional Reconstruction Model", | |
description="Upload an image to get the reconstructed output with reduced memory usage." | |
) | |
if __name__ == "__main__": | |
demo.launch() | |